Derleme
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 1, 109 - 117, 30.06.2025

Öz

Kaynakça

  • Akil L., Ahmad H.A. & Reddy R.S. 2014. Effects of climate change on Salmonella infections, Foodborne Pathogens and Disease, 11(12). Doi: https://doi.org/10.1089/fpd.2014.1803
  • Altieri M.A., Nicholls C.I., Henao A. & Lana M.A. 2015. Agroecology and the design of climate change-resilient farming systems, Agronomy for Sustainable Development, 35(3). Doi: https://doi.org/10.1007/s13593-015-0285-2
  • Bawa A.S. & Anilakumar K.R. 2013. Genetically modified foods: Safety, risks and public concerns—A review, Journal of Food Science and Technology, 50(6). Doi: https://doi.org/10.1007/s13197-012-0899-1
  • Bovay J. & Sumner D.A. 2018. Economic effects of the U.S. Food Safety Modernization Act, Applied Economic Perspectives and Policy, 40(3). Doi: https://doi.org/10.1093/aepp/ppx039
  • Caminade C., McIntyre K.M. & Jones A.E. 2019. Impact of recent and future climate change on vector‐borne diseases, Annals of the New York Academy of Sciences, 1436(1). Doi: https://doi.org/10.1111/nyas.13950
  • Cupp O.S., Walker D.E. & Hillison J. 2004. Agroterrorism in the U.S.: Key security challenge for the 21st century, Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 2(2). Doi: https://doi.org/10.1089/153871304323146436
  • Ehuwa O., Jaiswal A.K. & Jaiswal S. 2021. Salmonella, food safety and food handling practices, Foods, 10(5). Doi: https://doi.org/10.3390/foods10050907
  • Faulkner K.T., Robertson M.P. & Wilson J.R.U. 2020. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions, Global Change Biology, 26(5). Doi: https://doi.org/10.1111/gcb.14915
  • Fawzy S., Osman A.I., Doran J. & Rooney D.W. 2020. Strategies for mitigation of climate change: A review, Environmental Chemistry Letters, 18(6). Doi: https://doi.org/10.1007/s10311-020-01059-w
  • Foxell J.W. 2001. Current trends in agroterrorism (antilivestock, anticrop, and antisoil bioagricultural terrorism) and their potential impact on food security, Studies in Conflict & Terrorism, 24(2). Doi: https://doi.org/10.1080/10576100151130244
  • Frison E., Cherfas J. & Hodgkin T. 2011. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security, Sustainability, 3(1). Doi: https://doi.org/10.3390/su3010238
  • Grover A.K., Chopra S. & Mosher G.A. 2016. Food Safety Modernization Act: A quality management approach to identify and prioritize factors affecting adoption of preventive controls among small food facilities, Food Control, 66. Doi: https://doi.org/10.1016/j.foodcont.2016.02.024
  • Henriksson P.J.G., Rico A., Troell M., Klinger D.H., Buschmann A.H., Saksida S., Chadag M.V. & Zhang W. 2018. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: A review from a systems perspective, Sustainability Science, 13(4). Doi: https://doi.org/10.1007/s11625-017-0511-8
  • Hinson R., Lensink R. & Mueller A. 2019. Transforming agribusiness in developing countries: SDGs and the role of FinTech, Current Opinion in Environmental Sustainability, 41. Doi: https://doi.org/10.1016/j.cosust.2019.07.002
  • Hughes J.M. & Gerberding J.L. 2002. Anthrax bioterrorism: Lessons learned and future directions, Emerging Infectious Diseases, 8(10). Doi: https://doi.org/10.3201/eid0810.020466
  • Kovats R.S., Edwards S.J., Hajat S., Armstrong B.G., Ebi K.L. & Menne B. 2004. The effect of temperature on food poisoning: A time-series analysis of salmonellosis in ten European countries, Epidemiology and Infection, 132(3). Doi: https://doi.org/10.1017/S0950268804001992
  • Mishra A., Bruno E. & Zilberman D. 2021. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Science of the Total Environment, 754, 142210. Doi: https://doi.org/10.1016/j.scitotenv.2020.142210
  • Monke J. 2007. Agroterrorism: Threats and Preparedness. Congressional Research Service, Report No. RL32521.
  • Morton J.F. 2007. The impact of climate change on smallholder and subsistence agriculture, Proceedings of the National Academy of Sciences, 104(50). Doi: https://doi.org/10.1073/pnas.0701855104
  • Mumford J.D. 2002. Economic issues related to quarantine in international trade, European Review of Agricultural Economics, 29(3). Doi: https://doi.org/10.1093/erae/29.3.329
  • Myhre G., Alterskjær K., Stjern C.W., Hodnebrog Ø., Marelle L., Samset B.H., Sillmann J., Schaller N., Fischer E.M., Schulz M. & Stohl A. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming, Scientific Reports, 9. Doi: https://doi.org/10.1038/s41598-019-52277-4
  • Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P. & Hens L. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture, Frontiers in Public Health, 4. Doi: https://doi.org/10.3389/fpubh.2016.00148
  • Ricciardi A., Iacarella J., Aldridge D., Blackburn T., Carlton J., Catford J., Dick J., Hulme P., Jeschke J., Liebhold A., Lockwood J., MacIsaac H., Meyerson L., Pyšek P., Richardson D., Ruiz G., Simberloff D., Vila M. & Wardle D. 2020. Four priority areas to advance invasion science in the face of rapid environmental change, Environmental Reviews, 28(4), 253–260. doi: https://doi.org/10.1139/er-2020-0088
  • Rohr J.R., Barrett C.B., Civitello D.J., Craft M.E., Delius B., DeLeo G.A., Hudson P.J., Jouanard N., Nguyen K.H., Ostfeld R.S., Remais J.V., Riveau G., Sokolow S.H. & Tilman D. 2019. Emerging human infectious diseases and the links to global food production, Nature Sustainability, 2(6), 445–456. Doi: https://doi.org/10.1038/s41893-019-0293-3
  • Saputyningsih E., Diswandi D. & Jaung W. 2020. Does social capital matter in climate change adaptation? A lesson from agricultural sector in Yogyakarta, Indonesia, Land Use Policy, 95, 104189. Doi: https://doi.org/10.1016/j.landusepol.2019.104189
  • Savary S., Ficke A., Aubertot J.N. & Hollier C. 2012. Crop losses due to diseases and their implications for global food production losses and food security, Food Security, 4(4), 519–537. Doi: https://doi.org/10.1007/s12571-012-0200-5
  • Sazvar Z., Rahmani M. & Govindan K. 2018. A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health, Journal of Cleaner Production, 196, 1468–1484. Doi: https://doi.org/10.1016/j.jclepro.2018.04.118
  • Semeraro T., Scarano A., Leggieri A., Calisi A. & De Caroli M. 2023. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies, Land, 12(6), 1117. Doi: https://doi.org/10.3390/land12061117
  • Stede Y., Stoicescu A., Amore G., Nagy K., Rizzi V., Felicio M., Messens W., Pelaez A., Hempen M. & Sarno E. 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017, EFSA Journal, 16(12), e05500. Doi: https://doi.org/10.2903/j.efsa.2018.5500
  • Suffert F., Latxague É. & Sache I. 2009. Plant pathogens as agroterrorist weapons: Assessment of the threat for European agriculture and forestry, Food Security, 1(2), 221–232. Doi: https://doi.org/10.1007/s12571-009-0014-2
  • Tegegne H., Stoicescu A., Messens W., Hempen M., Rossi M., Sarno E., Rizzi V., Aznar I., Antoniou S.E., Baldinelli F., Young J., Merk H., Barco L., Mancin M. & Garbo D. 2019. The European Union One Health 2018 Zoonoses Report, EFSA Journal, 17(12), e05926. Doi: https://doi.org/10.2903/j.efsa.2019.5926
  • Trenberth K.E., Fasullo J.T., Branstator G. & Phillips A.S. 2014. Seasonal aspects of the recent pause in surface warming, Nature Climate Change, 4(10), 911–916. Doi: https://doi.org/10.1038/nclimate2341
  • Umali D.L., Feder G. & de Haan C. 1994. Animal health services: Finding the balance between public and private delivery, The World Bank Research Observer, 9(1), 71–96. Doi: https://doi.org/10.1093/wbro/9.1.71
  • Ungerer C. & Rogers D. 2006. The Threat of Agroterrorism to Australia: A Preliminary Assessment, Studies in Conflict & Terrorism, 29(2), 147–163. Doi: https://doi.org/10.1080/10576100500483610
  • Vinayaka A.C., Ngo T.A., Kant K., Engelsmann P., Dave V.P., Shahbazi M.A., Wolff A. & Bang D.D. 2019. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR, Biosensors and Bioelectronics, 129, 224–230. Doi: https://doi.org/10.1016/j.bios.2019.01.034
  • Wee B. 2016. Accessible accessibility research challenges, Journal of Transport Geography, 51, 9–16. Doi: https://doi.org/10.1016/j.jtrangeo.2015.10.018
  • Wilson T.M., Logan-Henfrey L.L., Weller R.E. & Kellman B. 2000. Agroterrorism, biological crimes, and biological warfare targeting animal agriculture, Microbes and Infection, 2(13), 1345–1355. Doi: https://doi.org/10.1016/S1286-4579(00)01327-1
  • Yeh J.Y., Seo H.S., Park J.H., Cho Y.S., Cho I.S., Lee J.H., Hwang J.Y. & Choi I.S. 2012. Livestock agroterrorism: The deliberate introduction of a highly infectious animal pathogen, Foodborne Pathogens and Disease, 9(10), 869–877. Doi: https://doi.org/10.1089/fpd.2012.1166

Agroterrorism and Global Warming: Risks and Mitigation

Yıl 2025, Cilt: 9 Sayı: 1, 109 - 117, 30.06.2025

Öz

Agroterrorism poses a significant threat to global food security, public health, and economic stability. It involves the deliberate introduction of pathogens, contaminants, or biological agents into agricultural systems with the intent to cause disruption, economic losses, and social instability. The increasing effects of global warming exacerbate these risks by altering pathogen transmission patterns, expanding the range of zoonotic hosts, and creating more favorable conditions for foodborne diseases such as Salmonella. This paper examines the intersection of agroterrorism and climate change, highlighting the vulnerabilities of modern agricultural infrastructure to bioterrorist threats. Additionally, it discusses historical cases, risk mitigation strategies, and the role of biosecurity measures in preventing agroterrorist attacks. Strengthening surveillance, improving regulatory frameworks, and enhancing preparedness measures are crucial to mitigating the dual threats of agroterrorism and climate change.

Kaynakça

  • Akil L., Ahmad H.A. & Reddy R.S. 2014. Effects of climate change on Salmonella infections, Foodborne Pathogens and Disease, 11(12). Doi: https://doi.org/10.1089/fpd.2014.1803
  • Altieri M.A., Nicholls C.I., Henao A. & Lana M.A. 2015. Agroecology and the design of climate change-resilient farming systems, Agronomy for Sustainable Development, 35(3). Doi: https://doi.org/10.1007/s13593-015-0285-2
  • Bawa A.S. & Anilakumar K.R. 2013. Genetically modified foods: Safety, risks and public concerns—A review, Journal of Food Science and Technology, 50(6). Doi: https://doi.org/10.1007/s13197-012-0899-1
  • Bovay J. & Sumner D.A. 2018. Economic effects of the U.S. Food Safety Modernization Act, Applied Economic Perspectives and Policy, 40(3). Doi: https://doi.org/10.1093/aepp/ppx039
  • Caminade C., McIntyre K.M. & Jones A.E. 2019. Impact of recent and future climate change on vector‐borne diseases, Annals of the New York Academy of Sciences, 1436(1). Doi: https://doi.org/10.1111/nyas.13950
  • Cupp O.S., Walker D.E. & Hillison J. 2004. Agroterrorism in the U.S.: Key security challenge for the 21st century, Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 2(2). Doi: https://doi.org/10.1089/153871304323146436
  • Ehuwa O., Jaiswal A.K. & Jaiswal S. 2021. Salmonella, food safety and food handling practices, Foods, 10(5). Doi: https://doi.org/10.3390/foods10050907
  • Faulkner K.T., Robertson M.P. & Wilson J.R.U. 2020. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions, Global Change Biology, 26(5). Doi: https://doi.org/10.1111/gcb.14915
  • Fawzy S., Osman A.I., Doran J. & Rooney D.W. 2020. Strategies for mitigation of climate change: A review, Environmental Chemistry Letters, 18(6). Doi: https://doi.org/10.1007/s10311-020-01059-w
  • Foxell J.W. 2001. Current trends in agroterrorism (antilivestock, anticrop, and antisoil bioagricultural terrorism) and their potential impact on food security, Studies in Conflict & Terrorism, 24(2). Doi: https://doi.org/10.1080/10576100151130244
  • Frison E., Cherfas J. & Hodgkin T. 2011. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security, Sustainability, 3(1). Doi: https://doi.org/10.3390/su3010238
  • Grover A.K., Chopra S. & Mosher G.A. 2016. Food Safety Modernization Act: A quality management approach to identify and prioritize factors affecting adoption of preventive controls among small food facilities, Food Control, 66. Doi: https://doi.org/10.1016/j.foodcont.2016.02.024
  • Henriksson P.J.G., Rico A., Troell M., Klinger D.H., Buschmann A.H., Saksida S., Chadag M.V. & Zhang W. 2018. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: A review from a systems perspective, Sustainability Science, 13(4). Doi: https://doi.org/10.1007/s11625-017-0511-8
  • Hinson R., Lensink R. & Mueller A. 2019. Transforming agribusiness in developing countries: SDGs and the role of FinTech, Current Opinion in Environmental Sustainability, 41. Doi: https://doi.org/10.1016/j.cosust.2019.07.002
  • Hughes J.M. & Gerberding J.L. 2002. Anthrax bioterrorism: Lessons learned and future directions, Emerging Infectious Diseases, 8(10). Doi: https://doi.org/10.3201/eid0810.020466
  • Kovats R.S., Edwards S.J., Hajat S., Armstrong B.G., Ebi K.L. & Menne B. 2004. The effect of temperature on food poisoning: A time-series analysis of salmonellosis in ten European countries, Epidemiology and Infection, 132(3). Doi: https://doi.org/10.1017/S0950268804001992
  • Mishra A., Bruno E. & Zilberman D. 2021. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Science of the Total Environment, 754, 142210. Doi: https://doi.org/10.1016/j.scitotenv.2020.142210
  • Monke J. 2007. Agroterrorism: Threats and Preparedness. Congressional Research Service, Report No. RL32521.
  • Morton J.F. 2007. The impact of climate change on smallholder and subsistence agriculture, Proceedings of the National Academy of Sciences, 104(50). Doi: https://doi.org/10.1073/pnas.0701855104
  • Mumford J.D. 2002. Economic issues related to quarantine in international trade, European Review of Agricultural Economics, 29(3). Doi: https://doi.org/10.1093/erae/29.3.329
  • Myhre G., Alterskjær K., Stjern C.W., Hodnebrog Ø., Marelle L., Samset B.H., Sillmann J., Schaller N., Fischer E.M., Schulz M. & Stohl A. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming, Scientific Reports, 9. Doi: https://doi.org/10.1038/s41598-019-52277-4
  • Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P. & Hens L. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture, Frontiers in Public Health, 4. Doi: https://doi.org/10.3389/fpubh.2016.00148
  • Ricciardi A., Iacarella J., Aldridge D., Blackburn T., Carlton J., Catford J., Dick J., Hulme P., Jeschke J., Liebhold A., Lockwood J., MacIsaac H., Meyerson L., Pyšek P., Richardson D., Ruiz G., Simberloff D., Vila M. & Wardle D. 2020. Four priority areas to advance invasion science in the face of rapid environmental change, Environmental Reviews, 28(4), 253–260. doi: https://doi.org/10.1139/er-2020-0088
  • Rohr J.R., Barrett C.B., Civitello D.J., Craft M.E., Delius B., DeLeo G.A., Hudson P.J., Jouanard N., Nguyen K.H., Ostfeld R.S., Remais J.V., Riveau G., Sokolow S.H. & Tilman D. 2019. Emerging human infectious diseases and the links to global food production, Nature Sustainability, 2(6), 445–456. Doi: https://doi.org/10.1038/s41893-019-0293-3
  • Saputyningsih E., Diswandi D. & Jaung W. 2020. Does social capital matter in climate change adaptation? A lesson from agricultural sector in Yogyakarta, Indonesia, Land Use Policy, 95, 104189. Doi: https://doi.org/10.1016/j.landusepol.2019.104189
  • Savary S., Ficke A., Aubertot J.N. & Hollier C. 2012. Crop losses due to diseases and their implications for global food production losses and food security, Food Security, 4(4), 519–537. Doi: https://doi.org/10.1007/s12571-012-0200-5
  • Sazvar Z., Rahmani M. & Govindan K. 2018. A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health, Journal of Cleaner Production, 196, 1468–1484. Doi: https://doi.org/10.1016/j.jclepro.2018.04.118
  • Semeraro T., Scarano A., Leggieri A., Calisi A. & De Caroli M. 2023. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies, Land, 12(6), 1117. Doi: https://doi.org/10.3390/land12061117
  • Stede Y., Stoicescu A., Amore G., Nagy K., Rizzi V., Felicio M., Messens W., Pelaez A., Hempen M. & Sarno E. 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017, EFSA Journal, 16(12), e05500. Doi: https://doi.org/10.2903/j.efsa.2018.5500
  • Suffert F., Latxague É. & Sache I. 2009. Plant pathogens as agroterrorist weapons: Assessment of the threat for European agriculture and forestry, Food Security, 1(2), 221–232. Doi: https://doi.org/10.1007/s12571-009-0014-2
  • Tegegne H., Stoicescu A., Messens W., Hempen M., Rossi M., Sarno E., Rizzi V., Aznar I., Antoniou S.E., Baldinelli F., Young J., Merk H., Barco L., Mancin M. & Garbo D. 2019. The European Union One Health 2018 Zoonoses Report, EFSA Journal, 17(12), e05926. Doi: https://doi.org/10.2903/j.efsa.2019.5926
  • Trenberth K.E., Fasullo J.T., Branstator G. & Phillips A.S. 2014. Seasonal aspects of the recent pause in surface warming, Nature Climate Change, 4(10), 911–916. Doi: https://doi.org/10.1038/nclimate2341
  • Umali D.L., Feder G. & de Haan C. 1994. Animal health services: Finding the balance between public and private delivery, The World Bank Research Observer, 9(1), 71–96. Doi: https://doi.org/10.1093/wbro/9.1.71
  • Ungerer C. & Rogers D. 2006. The Threat of Agroterrorism to Australia: A Preliminary Assessment, Studies in Conflict & Terrorism, 29(2), 147–163. Doi: https://doi.org/10.1080/10576100500483610
  • Vinayaka A.C., Ngo T.A., Kant K., Engelsmann P., Dave V.P., Shahbazi M.A., Wolff A. & Bang D.D. 2019. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR, Biosensors and Bioelectronics, 129, 224–230. Doi: https://doi.org/10.1016/j.bios.2019.01.034
  • Wee B. 2016. Accessible accessibility research challenges, Journal of Transport Geography, 51, 9–16. Doi: https://doi.org/10.1016/j.jtrangeo.2015.10.018
  • Wilson T.M., Logan-Henfrey L.L., Weller R.E. & Kellman B. 2000. Agroterrorism, biological crimes, and biological warfare targeting animal agriculture, Microbes and Infection, 2(13), 1345–1355. Doi: https://doi.org/10.1016/S1286-4579(00)01327-1
  • Yeh J.Y., Seo H.S., Park J.H., Cho Y.S., Cho I.S., Lee J.H., Hwang J.Y. & Choi I.S. 2012. Livestock agroterrorism: The deliberate introduction of a highly infectious animal pathogen, Foodborne Pathogens and Disease, 9(10), 869–877. Doi: https://doi.org/10.1089/fpd.2012.1166
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Politikaları
Bölüm Articles
Yazarlar

Gülşah Bayrakçı

Erman Akkanat

Ahmet Koluman

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 25 Mart 2025
Kabul Tarihi 25 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Bayrakçı, G., Akkanat, E., & Koluman, A. (2025). Agroterrorism and Global Warming: Risks and Mitigation. Eurasian Journal of Agricultural Research, 9(1), 109-117.
AMA Bayrakçı G, Akkanat E, Koluman A. Agroterrorism and Global Warming: Risks and Mitigation. EJAR. Haziran 2025;9(1):109-117.
Chicago Bayrakçı, Gülşah, Erman Akkanat, ve Ahmet Koluman. “Agroterrorism and Global Warming: Risks and Mitigation”. Eurasian Journal of Agricultural Research 9, sy. 1 (Haziran 2025): 109-17.
EndNote Bayrakçı G, Akkanat E, Koluman A (01 Haziran 2025) Agroterrorism and Global Warming: Risks and Mitigation. Eurasian Journal of Agricultural Research 9 1 109–117.
IEEE G. Bayrakçı, E. Akkanat, ve A. Koluman, “Agroterrorism and Global Warming: Risks and Mitigation”, EJAR, c. 9, sy. 1, ss. 109–117, 2025.
ISNAD Bayrakçı, Gülşah vd. “Agroterrorism and Global Warming: Risks and Mitigation”. Eurasian Journal of Agricultural Research 9/1 (Haziran 2025), 109-117.
JAMA Bayrakçı G, Akkanat E, Koluman A. Agroterrorism and Global Warming: Risks and Mitigation. EJAR. 2025;9:109–117.
MLA Bayrakçı, Gülşah vd. “Agroterrorism and Global Warming: Risks and Mitigation”. Eurasian Journal of Agricultural Research, c. 9, sy. 1, 2025, ss. 109-17.
Vancouver Bayrakçı G, Akkanat E, Koluman A. Agroterrorism and Global Warming: Risks and Mitigation. EJAR. 2025;9(1):109-17.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com