Araştırma Makalesi
BibTex RIS Kaynak Göster

Salda Lake's Shrinking Waters: A 20-Year Satellite Analysis

Yıl 2025, Cilt: 9 Sayı: 1, 118 - 129

Öz

This comprehensive study employed remote sensing techniques to thoroughly investigate the significant water level fluctuations in Salda Lake, a renowned natural wonder in Turkey. The research utilized Landsat satellite imagery from 2004, 2014, and 2024 to meticulously analyze changes in the lake's surface area over two decades. To accurately delineate water bodies and detect even subtle variations in water levels, the Normalized Difference Water Index (NDWI) method was applied. This method proved highly effective in distinguishing aquatic features from surrounding terrestrial elements, providing precise data on the lake's evolving footprint. The results of the NDWI analysis unequivocally demonstrated a distinct and concerning trend of declining water levels in Salda Lake. The quantitative data collected over the twenty-year period clearly illustrates a substantial reduction in the lake's water volume. To further understand this diminishing trend and project future scenarios, the annual water level data was subsequently subjected to a linear regression model. This statistical modeling approach allowed for a mathematical representation of the relationship between the analyzed years and the corresponding water levels, enabling the prediction of future trends based on past observations. The linear regression analysis confirmed a consistent and sustained decrease in Salda Lake's water level, underscoring the severity of the situation. This study not only highlights the critical role of remote sensing in effective water resource monitoring but also provides invaluable insights into the environmental changes impacting sensitive ecosystems like Salda Lake. The findings carry profound implications for regional water management strategies and are crucial for informing efforts to mitigate the effects of climate change on this vital natural asset. The data suggests an urgent need for intervention and sustainable practices to protect Salda Lake from further degradation.

Kaynakça

  • Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W., Livingstone D.M., Sommaruga R., Straile D., van Donk E., Weyhenmeyer G.A. & Winder M. 2020. Lakes as sentinels of climate change. Limnology and Oceanography, 65(7), 1519–1533
  • Akıncı H., Demir A. & Özkan C. 2022. Assessment of groundwater abstraction impacts on lake ecosystems in semi-arid regions: The case of Salda Lake. Turkish Journal of Water Science and Management, 6(1), 45–59.
  • Campbell J.B. & Wynne R.H. 2011. Introduction to remote sensing (5th ed.). Guilford Press, New York, 667 p.
  • Copernicus Programme. 2024. Copernicus Open Access Hub. https://scihub.copernicus.eu/ (accessed 11 March 2025) Çetin M., Sevik H. & Zeren İ. 2020. Environmental threats on Salda Lake and conservation strategies. Journal of Environmental Protection and Ecology, 21(2), 421–428.
  • Demir A., Gündoğdu K. & Yalçın M. 2021. Observed hydrological changes in Salda Lake: An indicator of climate and anthropogenic stress. Environmental Monitoring and Assessment, 193, 789.
  • Diker E. & Tokatlı C. 2017. Hydrochemical and ecological quality status of Turkish inland lakes. Journal of Water and Climate Change, 8(3), 479–491.
  • Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.I., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A.H., Soto D., Stiassny M.L.J. & Sullivan C.A. 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182.
  • Frazier P.S. & Page K.J. 2000. Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(12), 1461–1467.
  • Gerten D., Heck V., Jägermeyr J., Bodirsky B.L., Fetzer I., Jalava M., Kummu M., Lucht W., Rockström J. & Schellnhuber H.J. 2020. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 3(3), 200–208.
  • Gündoğdu K. & Yalçın M. 2023. Impacts of climate variability on lake hydrology in Southwestern Turkey. Environmental Earth Sciences, 82, 176.
  • IPCC 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/. (accessed 07 March 2025)
  • Jensen J.R. 2007. Remote sensing of the environment: An Earth resource perspective (2nd ed.). Pearson Prentice Hall, Upper Saddle River, 245 p.
  • Kadıoğlu M. 2012. Climate change and Turkey. Turkish Journal of Water Sciences, 5(1), 23–37.
  • Mishra V. & Singh V.P. 2011. Drought modelling – A review. Journal of Hydrology, 403(1–2), 157–175.
  • NASA 2021. NASA Earth Observatory: Salda Lake and Mars. https://earthobservatory.nasa.gov/images/147238/salda-lake-and-mars. (accessed 04 March 2025)
  • Olcott A.N., Topcu G. & Konhauser K.O. 2019. Salda Lake, Turkey – A modern analog for the ancient lakes of Mars. Astrobiology, 19(7), 845–856.
  • O'Reilly C.M., Sharma S., Gray D.K., Hampton S.E., Read J.S., Rowley R.J., Schneider P., Lenters J.D., McIntyre P.B., Kraemer B.M., Weyhenmeyer G.A., Straile D., Dong B., Adrian R., Allan M.G. & Rose K.C. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42(24), 10,773–10,781.
  • Palmer M.A., Reidy Liermann C.A., Nilsson C., Flörke M., Alcamo J., Lake P.S. & Bond N. 2015. Climate change and the world's river basins: Anticipating management options. Frontiers in Ecology and the Environment, 13(2), 71–78.
  • Pekel J.F., Cottam A., Gorelick N. & Belward A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422.
  • Sawayama S., Tanaka T. & Kumagai M. 2020. Evaluating remote sensing-based water quality indices. Remote Sensing of Environment, 237, 111534.
  • Schindler D.W. 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1part2), 356–363.
  • Topcu G., Olcott A.N. & Konhauser K.O. 2018. Microbialites of Lake Salda, Turkey. Sedimentary Geology, 374, 64–73.
  • Turkish Ministry of Environment, Urbanization and Climate Change 2023. Climate and environment reports of Turkey. Retrieved from https://csb.gov.tr/. (accessed 07 March 2025) UNFCCC 2015. Paris Agreement. United Nations Framework Convention on Climate Change. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. (accessed 11 March 2025)
  • USGS Landsat Program 2024. Earth Explorer Satellite Data Portal. United States Geological Survey. https://earthexplorer.usgs.gov/. (accessed 11 March 2025)
  • Volpe M., Silvestri M. & Marani M. 2016. Monitoring water bodies using remote sensing: A review of current capabilities and research needs. Remote Sensing of Environment, 174, 279–291. Wang S., Huang J., He Y., Guan Y. & Wang Y. 2021. Global lake changes and potential drivers. Nature Communications, 12, 6224.
  • Wetzel R.G. 2001. Limnology: Lake and river ecosystems (3rd ed.). Academic Press, San Diego, 1006 p.
Yıl 2025, Cilt: 9 Sayı: 1, 118 - 129

Öz

Kaynakça

  • Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W., Livingstone D.M., Sommaruga R., Straile D., van Donk E., Weyhenmeyer G.A. & Winder M. 2020. Lakes as sentinels of climate change. Limnology and Oceanography, 65(7), 1519–1533
  • Akıncı H., Demir A. & Özkan C. 2022. Assessment of groundwater abstraction impacts on lake ecosystems in semi-arid regions: The case of Salda Lake. Turkish Journal of Water Science and Management, 6(1), 45–59.
  • Campbell J.B. & Wynne R.H. 2011. Introduction to remote sensing (5th ed.). Guilford Press, New York, 667 p.
  • Copernicus Programme. 2024. Copernicus Open Access Hub. https://scihub.copernicus.eu/ (accessed 11 March 2025) Çetin M., Sevik H. & Zeren İ. 2020. Environmental threats on Salda Lake and conservation strategies. Journal of Environmental Protection and Ecology, 21(2), 421–428.
  • Demir A., Gündoğdu K. & Yalçın M. 2021. Observed hydrological changes in Salda Lake: An indicator of climate and anthropogenic stress. Environmental Monitoring and Assessment, 193, 789.
  • Diker E. & Tokatlı C. 2017. Hydrochemical and ecological quality status of Turkish inland lakes. Journal of Water and Climate Change, 8(3), 479–491.
  • Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.I., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A.H., Soto D., Stiassny M.L.J. & Sullivan C.A. 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182.
  • Frazier P.S. & Page K.J. 2000. Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(12), 1461–1467.
  • Gerten D., Heck V., Jägermeyr J., Bodirsky B.L., Fetzer I., Jalava M., Kummu M., Lucht W., Rockström J. & Schellnhuber H.J. 2020. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 3(3), 200–208.
  • Gündoğdu K. & Yalçın M. 2023. Impacts of climate variability on lake hydrology in Southwestern Turkey. Environmental Earth Sciences, 82, 176.
  • IPCC 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/. (accessed 07 March 2025)
  • Jensen J.R. 2007. Remote sensing of the environment: An Earth resource perspective (2nd ed.). Pearson Prentice Hall, Upper Saddle River, 245 p.
  • Kadıoğlu M. 2012. Climate change and Turkey. Turkish Journal of Water Sciences, 5(1), 23–37.
  • Mishra V. & Singh V.P. 2011. Drought modelling – A review. Journal of Hydrology, 403(1–2), 157–175.
  • NASA 2021. NASA Earth Observatory: Salda Lake and Mars. https://earthobservatory.nasa.gov/images/147238/salda-lake-and-mars. (accessed 04 March 2025)
  • Olcott A.N., Topcu G. & Konhauser K.O. 2019. Salda Lake, Turkey – A modern analog for the ancient lakes of Mars. Astrobiology, 19(7), 845–856.
  • O'Reilly C.M., Sharma S., Gray D.K., Hampton S.E., Read J.S., Rowley R.J., Schneider P., Lenters J.D., McIntyre P.B., Kraemer B.M., Weyhenmeyer G.A., Straile D., Dong B., Adrian R., Allan M.G. & Rose K.C. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42(24), 10,773–10,781.
  • Palmer M.A., Reidy Liermann C.A., Nilsson C., Flörke M., Alcamo J., Lake P.S. & Bond N. 2015. Climate change and the world's river basins: Anticipating management options. Frontiers in Ecology and the Environment, 13(2), 71–78.
  • Pekel J.F., Cottam A., Gorelick N. & Belward A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422.
  • Sawayama S., Tanaka T. & Kumagai M. 2020. Evaluating remote sensing-based water quality indices. Remote Sensing of Environment, 237, 111534.
  • Schindler D.W. 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1part2), 356–363.
  • Topcu G., Olcott A.N. & Konhauser K.O. 2018. Microbialites of Lake Salda, Turkey. Sedimentary Geology, 374, 64–73.
  • Turkish Ministry of Environment, Urbanization and Climate Change 2023. Climate and environment reports of Turkey. Retrieved from https://csb.gov.tr/. (accessed 07 March 2025) UNFCCC 2015. Paris Agreement. United Nations Framework Convention on Climate Change. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. (accessed 11 March 2025)
  • USGS Landsat Program 2024. Earth Explorer Satellite Data Portal. United States Geological Survey. https://earthexplorer.usgs.gov/. (accessed 11 March 2025)
  • Volpe M., Silvestri M. & Marani M. 2016. Monitoring water bodies using remote sensing: A review of current capabilities and research needs. Remote Sensing of Environment, 174, 279–291. Wang S., Huang J., He Y., Guan Y. & Wang Y. 2021. Global lake changes and potential drivers. Nature Communications, 12, 6224.
  • Wetzel R.G. 2001. Limnology: Lake and river ecosystems (3rd ed.). Academic Press, San Diego, 1006 p.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Peyzaj Planlama
Bölüm Articles
Yazarlar

Orhun Soydan

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi
Gönderilme Tarihi 26 Mayıs 2025
Kabul Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Soydan, O. (2025). Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis. Eurasian Journal of Agricultural Research, 9(1), 118-129.
AMA Soydan O. Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis. EJAR. Haziran 2025;9(1):118-129.
Chicago Soydan, Orhun. “Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis”. Eurasian Journal of Agricultural Research 9, sy. 1 (Haziran 2025): 118-29.
EndNote Soydan O (01 Haziran 2025) Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis. Eurasian Journal of Agricultural Research 9 1 118–129.
IEEE O. Soydan, “Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis”, EJAR, c. 9, sy. 1, ss. 118–129, 2025.
ISNAD Soydan, Orhun. “Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis”. Eurasian Journal of Agricultural Research 9/1 (Haziran 2025), 118-129.
JAMA Soydan O. Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis. EJAR. 2025;9:118–129.
MLA Soydan, Orhun. “Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis”. Eurasian Journal of Agricultural Research, c. 9, sy. 1, 2025, ss. 118-29.
Vancouver Soydan O. Salda Lake’s Shrinking Waters: A 20-Year Satellite Analysis. EJAR. 2025;9(1):118-29.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com