Translasyonel Kemik Doku Mühendisliği Protokolünde Dental Folikül Kök Hücreleri ile Dental Pulpa Kök Hücrelerinin Karşılaştırılması
Yıl 2025,
Cilt: 4 Sayı: 2, 21 - 29, 29.05.2025
Elif Ozcan
,
Yücel Erbilgin
Selin Yıldırım
Noushin Zibandeh
Tunç Akkoç
Kamil Goker
Öz
Amaç: Bu çalışmada, DPSC ve DFSC'lerin nanomesh içeren (nmPCL) ve düz (PCL) polikaprolakton iskeleler üzerindeki osteojenik potansiyellerini in vitro olarak karşılaştırmak ve kemik rejenerasyonunda translasyonel tıp protokollerine katkıda bulunmak amaçlanmıştır.
Gereç ve Yöntemler: DPSC'ler ve DFSC'ler PCL ve nmPCL iskeleleri üzerinde osteojenik olarak farklılaştırılmış ve iki haftalık kültür sonrasında dört grup hücre proliferasyonu ve tip I kollajen oluşum oranları açısından incelenmiştir. İmmünofloresan etiketlemenin ardından, dört grubu karşılaştırmak için parametrik olmayan (Kruskal Wallis) ve çoklu karşılaştırma testleri kullanılmıştır.
Sonuçlar: Tüm gruplar arasında, iskelelerdeki ortalama hücre sayıları 30.8 ila 82.6 hücre/0.0915 mm2 arasında ve toplam kolajen oluşumu %2.79 ila %17,9 arasında değişmektedir. DFSC ve nmPCL kompleksi diğer gruplara kıyasla anlamlı olarak daha yüksek hücre sayısı (p< 0,01) ve kolajen oluşum oranları (p< 0,01) göstermiştir.
Sonuç: DFSC/nmPCL grubunun hücre proliferasyonu ve kemik matriksi oluşumu üzerinde üstün özellikler gösterdiği bulunmuştur. Bu kompleks maksillofasiyal doku mühendisliği uygulamaları için umut verici bir araçtır.
Kaynakça
- 1. Chalisserry EP, Nam SY, Park SH, A. S. Therapeutic potential of dental stem cells. J Tissue Eng. 2017 May 3:8:2041731417702531. doi: 10.1177/2041731417702531.
- 2. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 2003 Oct;85(10):1927-35. doi: 10.2106/00004623-200310000-00010.
- 3. Panetta, N. J., Gupta, D. M., Quarto, N. Longaker, M. T. Mesenchymal cells for skeletal tissue engineering. Panminerva Med. 2009 Mar;51(1):25-41.
- 4. Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen J.A.The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. A. 2010 Apr;93(1):247-57. doi: 10.1002/jbm.a.32535.
- 5. Rezai-Rad M, Bova JF, Orooji M, Pepping J, Qureshi A, Del Piero F, et al. Evaluation of bone regeneration otential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy. 2015 Nov;17(11):1572-81. doi: 0.1016/j.jcyt.2015.07.013.
- 6. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med. 2017 May;28(5):77.
doi: 10.1007/s10856-017-5883-x.
- 7. Jang JY, Park SH, Park JH, Lee BK, Yun JH, Lee B et al. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel. Macromol. Biosci. 2016 Aug;16(8):1158-69. doi: 10.1002/mabi.201600001.
- 8. Nivedhitha Sundaram M, Sowmya S, Deepthi S, Bumgardener JD, Jayakumar R. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater. 2016 May;104(4):761-70. doi: 10.1002/jbm.b.33480.
- 9. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Biological characteristic effects of human dental pulp stem cells on poly-ε caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. J. Mater. Sci. Mater. Med. 2017 Feb;28(2):25. doi:
10.1007/s10856-016-5833-z.
- 10. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J. Bone Miner. Res. 2005 Mar;20(3):399-409. doi: 10.1359/JBMR.041117.
- 11. Rimondini, L, Mele, S. Stem cell technologies for tissue regeneration in dentistry. Minerva Stomatol. 2009 Oct;58(10):483-500.
- 12. Kwan MD, Slater BJ, Wan DC, Longaker MT. Cell-based therapies for skeletal regenerative medicine. Hum. Mol. Genet. 2008 Apr 15;17(R1):R93-8. doi: 10.1093/hmg/ddn071.
- 13. Goel A, Sangwan SS, Siwach RC, Ali AM. Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 2005 Jan;36(1):203-6. doi: 10.1016/j.injury.2004.01.009.
- 14. Pisciotta A, Riccio M, Carnevale G, Beretti F, Gibellini L, Maraldi T et al. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS One 2012;7(11):e50542. doi: 10.1371/journal.pone.0050542.
- 15. Mori G, Ballini A, Carbone C, Oranger A, Brunetti G, Di Benedetto A et al. Osteogenic differentiation of dental follicle stem cells. Int. J. Med. Sci. 2012;9(6):480-7. doi: 10.7150/ijms.4583.
- 16. Yao S, He H, Gutierrez DL, Rad MR, Liu D, Li C et al. Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation. Cells. Tissues. Organs 2013;198(6):438-47. doi: 10.1159/000360275.
- 17. Laino G, Carinci F, Graziano A, d’Aquino R, Lanza V, De Rosa A et al. In vitro bone production using stem cells derived from human dental pulp. J. Craniofac. Surg. 2006 May;17(3):511-5. doi: 10.1097/00001665-200605000-00021.
- 18. Todorovic V, Markovic D, Milošević-Jovčić N, Petakov M, Balint B, Čolić M et al. Dental pulp stem cells: Potential significance in regenerative medicine. Stomatol. Glas. Srb. 2008 55(3):170–179. doi: 10.2298/SGS0803170T
- 19. Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P. The efficacy of olycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone
tissue engineering. J Biomed Mater Res A. 2016 Jan;104(1):264- 71. doi: 10.1002/jbm.a.35558.
- 20. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat. Biotechnol. 2003 Sep;21(9):1025-32. doi: 10.1038/nbt864.
- 21. Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol. Bioeng. 2005 Nov 20;92(4):492-500. doi: 10.1002/bit.20614.
- 22. Ravichandran A, Lim J, Chong MSK, Wen F, Liu Y, Pillay YT et al. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2017 Nov;105(8):2366-2375. doi: 10.1002/jbm.b.33772.
- 23. Flores-Cedillo ML, Alvarado-Estrada KN, Pozos-Guillén AJ, Murguía-Ibarra JS, Vidal MA, Cervantes-Uc JM et al. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med. 2016 Feb;27(2):35. doi: 10.1007/s10856- 015-5640-y.
- 24. Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ. Formation of a mandibular condyle in vitro by tissue engineering. J. Oral Maxillofac. Surg. 2003 Jan;61(1):94-100. doi: 10.1053/joms.2003.50015.
- 25. Abukawa H, Shin M, Williams WB, Vacanti JP, Kaban LB, Troulis MJ. Reconstruction of mandibular defects with autologous tissueengineered bone. J. Oral Maxillofac. Surg. 2004 May;62(5):601- 6. doi: 10.1016/j.joms.2003.11.010.
- 26. Scaglione S, Ilengo C, Fato M, Quarto R. Hydroxyapatite-coated polycaprolacton wide mesh as a model of open structure for bone regeneration. Tissue Eng. Part A 2009 Jan;15(1):155-63. doi: 10.1089/ten.tea.2007.0410.
- 27. Porter JR, Henson A, Popat KC. Biodegradable poly(epsiloncaprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009 Feb;30(5):780-8. doi: 10.1016/j. biomaterials.2008.10.022.
- 28. Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U et al. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Tissue Eng. Part A 2010 Feb;16(2):393-404. doi: 10.1089/ten.TEA.2009.0242.
- 29. Jensen J, Kraft DC, Lysdahl H, Foldager CB, Chen M, Kristiansen AA et al. Functionalization of olycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng. Part A. 2015 Feb;21(3-4):729-39. doi: 10.1089/ten.TEA.2014.0177.
- 30. Shoi K, Aoki K, Ohya K, Takagi Y, Shimokawa H. Characterization of pulp and follicle stem cells from impacted supernumerary maxillary incisors. Pediatr. Dent. 2014 May-Jun;36(3):79-84.
- 31. Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y et al. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering. Stem Cells Dev. Dec 1;27(23):1634-1645.
- 32. Salgado CL, Barrias CC, Monteiro FJM. Clarifying the Tooth-Derived Stem Cells Behavior in a 3D Biomimetic Scaffold for Bone Tissue Engineering Applications. Front Bioeng Biotechnol. 2020 Jun 26:8:724. doi: 10.3389/fbioe.2020.00724.
- 33. Li Z, Wang D, Li J, Liu H, Nie L, Li C. Bone Regeneration Facilitated by Autologous Bioscaffold Material: Liquid Phase of Concentrated Growth Factor with Dental Follicle Stem Cell Loading. ACS Biomater Sci Eng. 2024 May 13;10(5):3173-3187
34. Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D et al. Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 2007 Apr;40(4):1078-87. doi: 10.1016/j.bone.2006.11.024.
- 35. Lee JH, Rim NG, Jung HS, Shin H. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite. Macromol. Biosci. 2010 Feb 11;10(2):173-82. doi: 10.1002/mabi.200900169.
- 36. Martins A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL et al. Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Eng. Part A 2010 Dec;16(12):3599-609. doi: 10.1089/ten.TEA.2009.0779.
- 37. Sadeghzadeh H, Mehdipour A, Dianat-Moghadam H, Salehi R, Khoshfetrat AB, Hassani A et al. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions. Stem Cell Res Ther 2022 Apr 4;13(1):143. doi: 10.1186/s13287-022-02816-0.
Comparison of Dental Follicle Stem Cells and Dental Pulp Stem Cells in a Translational Bone Tissue Engineering Protocol
Yıl 2025,
Cilt: 4 Sayı: 2, 21 - 29, 29.05.2025
Elif Ozcan
,
Yücel Erbilgin
Selin Yıldırım
Noushin Zibandeh
Tunç Akkoç
Kamil Goker
Öz
Purpose: In this study, it is aimed to establish and refine a translational protocol and compare the osteogenic potential of DPSC and DFSC’s on nano mesh containing (nmPCL) and plain (PCL) polycaprolactone scaffolds in vitro and contribute the translational medicine protocols in bone regeneration.
Materials and Methods: DPSCs and DFSCs were osteogenically differentiated on PCL and nmPCL scaffolds and four groups were examined for cell proliferation and type I collagen formation rates after two weeks of culture. Following immunofluorescence labeling, Nonparametric (Kruskal Wallis) and multiple comparison tests were used to compare the four groups.
Results: Among all groups, mean cell counts on scaffolds ranged from 30.8 to 82.6 cells/0.0915 mm2, and total collagen formation ranged from 2.79% to 17,9%. DFSC and nmPCL complex showed significantly higher cell counts (p< 0,01) and collagen formation rates (p< 0,01) in comparison to other groups.
Conclusion: DFSC/nmPCL group is found to show superior properties on cell proliferation and bone matrix formation. This complex is a promising tool for maxillofacial tissue engineering applications.
Kaynakça
- 1. Chalisserry EP, Nam SY, Park SH, A. S. Therapeutic potential of dental stem cells. J Tissue Eng. 2017 May 3:8:2041731417702531. doi: 10.1177/2041731417702531.
- 2. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 2003 Oct;85(10):1927-35. doi: 10.2106/00004623-200310000-00010.
- 3. Panetta, N. J., Gupta, D. M., Quarto, N. Longaker, M. T. Mesenchymal cells for skeletal tissue engineering. Panminerva Med. 2009 Mar;51(1):25-41.
- 4. Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen J.A.The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. A. 2010 Apr;93(1):247-57. doi: 10.1002/jbm.a.32535.
- 5. Rezai-Rad M, Bova JF, Orooji M, Pepping J, Qureshi A, Del Piero F, et al. Evaluation of bone regeneration otential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy. 2015 Nov;17(11):1572-81. doi: 0.1016/j.jcyt.2015.07.013.
- 6. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med. 2017 May;28(5):77.
doi: 10.1007/s10856-017-5883-x.
- 7. Jang JY, Park SH, Park JH, Lee BK, Yun JH, Lee B et al. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel. Macromol. Biosci. 2016 Aug;16(8):1158-69. doi: 10.1002/mabi.201600001.
- 8. Nivedhitha Sundaram M, Sowmya S, Deepthi S, Bumgardener JD, Jayakumar R. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater. 2016 May;104(4):761-70. doi: 10.1002/jbm.b.33480.
- 9. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Biological characteristic effects of human dental pulp stem cells on poly-ε caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. J. Mater. Sci. Mater. Med. 2017 Feb;28(2):25. doi:
10.1007/s10856-016-5833-z.
- 10. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J. Bone Miner. Res. 2005 Mar;20(3):399-409. doi: 10.1359/JBMR.041117.
- 11. Rimondini, L, Mele, S. Stem cell technologies for tissue regeneration in dentistry. Minerva Stomatol. 2009 Oct;58(10):483-500.
- 12. Kwan MD, Slater BJ, Wan DC, Longaker MT. Cell-based therapies for skeletal regenerative medicine. Hum. Mol. Genet. 2008 Apr 15;17(R1):R93-8. doi: 10.1093/hmg/ddn071.
- 13. Goel A, Sangwan SS, Siwach RC, Ali AM. Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 2005 Jan;36(1):203-6. doi: 10.1016/j.injury.2004.01.009.
- 14. Pisciotta A, Riccio M, Carnevale G, Beretti F, Gibellini L, Maraldi T et al. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS One 2012;7(11):e50542. doi: 10.1371/journal.pone.0050542.
- 15. Mori G, Ballini A, Carbone C, Oranger A, Brunetti G, Di Benedetto A et al. Osteogenic differentiation of dental follicle stem cells. Int. J. Med. Sci. 2012;9(6):480-7. doi: 10.7150/ijms.4583.
- 16. Yao S, He H, Gutierrez DL, Rad MR, Liu D, Li C et al. Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation. Cells. Tissues. Organs 2013;198(6):438-47. doi: 10.1159/000360275.
- 17. Laino G, Carinci F, Graziano A, d’Aquino R, Lanza V, De Rosa A et al. In vitro bone production using stem cells derived from human dental pulp. J. Craniofac. Surg. 2006 May;17(3):511-5. doi: 10.1097/00001665-200605000-00021.
- 18. Todorovic V, Markovic D, Milošević-Jovčić N, Petakov M, Balint B, Čolić M et al. Dental pulp stem cells: Potential significance in regenerative medicine. Stomatol. Glas. Srb. 2008 55(3):170–179. doi: 10.2298/SGS0803170T
- 19. Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P. The efficacy of olycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone
tissue engineering. J Biomed Mater Res A. 2016 Jan;104(1):264- 71. doi: 10.1002/jbm.a.35558.
- 20. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat. Biotechnol. 2003 Sep;21(9):1025-32. doi: 10.1038/nbt864.
- 21. Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol. Bioeng. 2005 Nov 20;92(4):492-500. doi: 10.1002/bit.20614.
- 22. Ravichandran A, Lim J, Chong MSK, Wen F, Liu Y, Pillay YT et al. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2017 Nov;105(8):2366-2375. doi: 10.1002/jbm.b.33772.
- 23. Flores-Cedillo ML, Alvarado-Estrada KN, Pozos-Guillén AJ, Murguía-Ibarra JS, Vidal MA, Cervantes-Uc JM et al. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med. 2016 Feb;27(2):35. doi: 10.1007/s10856- 015-5640-y.
- 24. Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ. Formation of a mandibular condyle in vitro by tissue engineering. J. Oral Maxillofac. Surg. 2003 Jan;61(1):94-100. doi: 10.1053/joms.2003.50015.
- 25. Abukawa H, Shin M, Williams WB, Vacanti JP, Kaban LB, Troulis MJ. Reconstruction of mandibular defects with autologous tissueengineered bone. J. Oral Maxillofac. Surg. 2004 May;62(5):601- 6. doi: 10.1016/j.joms.2003.11.010.
- 26. Scaglione S, Ilengo C, Fato M, Quarto R. Hydroxyapatite-coated polycaprolacton wide mesh as a model of open structure for bone regeneration. Tissue Eng. Part A 2009 Jan;15(1):155-63. doi: 10.1089/ten.tea.2007.0410.
- 27. Porter JR, Henson A, Popat KC. Biodegradable poly(epsiloncaprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009 Feb;30(5):780-8. doi: 10.1016/j. biomaterials.2008.10.022.
- 28. Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U et al. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Tissue Eng. Part A 2010 Feb;16(2):393-404. doi: 10.1089/ten.TEA.2009.0242.
- 29. Jensen J, Kraft DC, Lysdahl H, Foldager CB, Chen M, Kristiansen AA et al. Functionalization of olycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng. Part A. 2015 Feb;21(3-4):729-39. doi: 10.1089/ten.TEA.2014.0177.
- 30. Shoi K, Aoki K, Ohya K, Takagi Y, Shimokawa H. Characterization of pulp and follicle stem cells from impacted supernumerary maxillary incisors. Pediatr. Dent. 2014 May-Jun;36(3):79-84.
- 31. Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y et al. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering. Stem Cells Dev. Dec 1;27(23):1634-1645.
- 32. Salgado CL, Barrias CC, Monteiro FJM. Clarifying the Tooth-Derived Stem Cells Behavior in a 3D Biomimetic Scaffold for Bone Tissue Engineering Applications. Front Bioeng Biotechnol. 2020 Jun 26:8:724. doi: 10.3389/fbioe.2020.00724.
- 33. Li Z, Wang D, Li J, Liu H, Nie L, Li C. Bone Regeneration Facilitated by Autologous Bioscaffold Material: Liquid Phase of Concentrated Growth Factor with Dental Follicle Stem Cell Loading. ACS Biomater Sci Eng. 2024 May 13;10(5):3173-3187
34. Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D et al. Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 2007 Apr;40(4):1078-87. doi: 10.1016/j.bone.2006.11.024.
- 35. Lee JH, Rim NG, Jung HS, Shin H. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite. Macromol. Biosci. 2010 Feb 11;10(2):173-82. doi: 10.1002/mabi.200900169.
- 36. Martins A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL et al. Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Eng. Part A 2010 Dec;16(12):3599-609. doi: 10.1089/ten.TEA.2009.0779.
- 37. Sadeghzadeh H, Mehdipour A, Dianat-Moghadam H, Salehi R, Khoshfetrat AB, Hassani A et al. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions. Stem Cell Res Ther 2022 Apr 4;13(1):143. doi: 10.1186/s13287-022-02816-0.