Araştırma Makalesi
BibTex RIS Kaynak Göster

Determinants of Renewable Energy Consumption: Case of BRICS-T Countries

Yıl 2025, Sayı: 42, 69 - 85, 25.06.2025
https://doi.org/10.26650/ekoist.2024.42.1570083

Öz

With their rapidly growing economies and populations, the BRICS-T (Brazil, Russia, India, China, South Africa and Turkey) countries’ need for energy is increasing day by day. The energy policies they will implement to meet this need will play a critical role in determining their place in the global balance of power. In this context, BRICS-T countries have turned to renewable energy resources instead of the limited resources of fossil fuels to meet these increasing energy demands. To develop strategies to increase the use of renewable energy and to put forward sustainable energy policies, this study aims to determine the relationship between renewable energy consumption and economic growth, carbon dioxide emissions and foreign direct investment inflows in BRICS-T countries. For this purpose, using the annual data of the countries for the period 1990-2020, model estimations were made and analyses were carried out with the Structural Break Panel-SUR approach. According to the results of the analyses, it was determined that there was a statistically significant increase in renewable energy consumption after 2015 in Brazil and after 2012 in India, while there was a statistically significant decrease in renewable energy consumption after 1998 in China, after 2001 in South Africa and after 2000 in Turkey. In addition, the effects of the independent variables in the renewable energy consumption model differed on a country basis. In this study, by addressing the determinants of renewable energy consumption in BRICS-T countries, it has been tried to make important contributions to achieving critical goals such as increasing energy security, living in a cleaner environment with reduced carbon dioxide emissions and protecting the ecosystem.

Kaynakça

  • Arı, A. (2021). Yenilenebilir enerji ve doğrudan yabancı yatırımlar. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 23(40), 122-131. google scholar
  • Aksakal, M. (2011). Görünürde ilişkisiz regresyon modelleri ve turizm sektörü üzerine bir uygulama. (Yüksek Lisans Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Aksakal, M., & Arıcıgil Çilan, Ç. (2015). Türkiye’ye yönelik turizm talebinin görünürde ilişkisiz regresyon modelleri ile incelenmesi. Uluslararası İktisadi Ve İdari İncelemeler Dergisi (14), 235-256. Erişim adresi: https://dergipark.org.tr/tr/pub/ulikidince/issue/ 21614/232167 google scholar
  • Bai, J. (2009). Panel Data Models with Interactive Fixed Effects. Econometrica, 77(4), 1229-1279. https://doi.org/10.3982/ECTA6135 google scholar
  • Bai, J., & Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica, 66(1), 47-78. https:// doi.org/10.2307/2998540 google scholar
  • Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22. https://doi.org/10.1002/jae.659 google scholar
  • Baltagi, B. H. (2015). The Oxford Handbook of Panel Data. New York: Oxford University Press. google scholar
  • Bersvendsen, T., & Ditzen, J. (2021). Testing for slope heterogeneity in Stata. Stata Journal, 21(1), 51-80. https://doi.org/10.1177/1536867 X2110000 google scholar
  • Blomquist, J., & Westerlund, J. (2013). Testing slope homogeneity in large panels with serial correlation. Economics Letters, 121(3), 374-378. https://doi.org/10.1016/j.econlet.2013.09.012 google scholar
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253. https://doi.org/10.2307/2297111 google scholar
  • Chudik, A., & Pesaran, M. H. (2015). Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors. Journal of Econometrics, 188(2), 393-420. https://doi.org/10.1016/j.jeconom.2015.03.007 google scholar
  • Chudik, A., Pesaran, M. H., & Tosetti, E. (2011). Weak and strong cross-section dependence and estimation of large panels. Econometrics Journal, 14(1), C45-C90. https://doi.org/10.1111/j.1368-423X.2010.00330.x google scholar
  • Cole, M. A., Elliott, R. J., & Strobl, E. (2008). The environmental performance of firms: The role of foreign ownership, training, and experience. Ecological Economics, 65(3), 538-546. https://doi.org/10.1016/j.ecolecon.2007.07.025 google scholar
  • De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-datamodels. The Stata Journal, 6(4), 482-496. https://doi.org/10.1177/1536867X0600600403 google scholar
  • Ditzen, J., Karavias, Y., & Westerlund, J. (2021). Testing and Estimating Structural Breaks in Time Series and Panel Data in Stata. Discussion Papers, 21-14. google scholar
  • Erdinç, Z., & Aydınbaş, G. (2020). Yenilenebilir enerji tüketiminin belirleyicileri üzerine panel veri analizi. Journal of Social, Humanities and Administrative Sciences, 6(24), 346-358. http://dx.doi.org/10.31589/JOSHAS.266 google scholar
  • Erdugan, F. (2012). Görünürde İlişkisiz Regresyon Modellerinde Parametre Tahmin Yöntemleri. (Doktora Tezi). Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana. google scholar
  • Ertekin, M. N. (2023). Yenilenebilir ve Yenilenemeyen Enerji Tüketimi, CO2 Salımı ve Sürdürülebilir Kalkınma İlişkisi: Türkiye Örneği. (Yüksek Lisans Tezi). Bandırma Onyedi Eylül Üniversitesi Sosyal Bilimler Enstitüsü, Bandırma. google scholar
  • Gulıyev, H. (2023). Heterojen Yapısal Kırılmaları Dikkate Alan Heterojen Panel Veri Tahmincilerinin Türetilmesi: G7 Ülkelerinde Ekonomik Büyüme İle Enerji Tüketimi Arasındaki İlişki. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Üniversitesi, İstanbul. google scholar
  • Kurucu, A. A. (2016). Yenilenebilir Enerji Örneği Üzerinden Ekolojik Modernleşme Kuramı Tartışması. Ankara Üniversitesi Sosyal Bilimler Dergisi, 2, 1-20. https://doi.org/10.1501/sbeder_0000000120 google scholar
  • Özşahin, Ş., Mucuk, M., & Gerçeker, M. (2016). Yenilenebilir enerji ve ekonomik büyüme arasındaki ilişki: BRICS-T ülkeleri üzerine panel ARDL analizi. Siyaset, Ekonomi ve Yönetim Araştırmaları Dergisi, 4(11), 111-130. google scholar
  • Pesaran, H. M. (2015). Time Series and Panel Data Econometrics. Oxford University Press. google scholar
  • Pesaran, M. H. (2006). Estimation and ınference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x google scholar
  • Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/ 10.1016/j.jeconom.2007.05.010 google scholar
  • Swamy, P. (1970). Efficient Inference in a Random Coefficient Regression Model. Econometrica, 38(2), 311-323. https://doi.org/10.2307/ 1913012 google scholar
  • Tan, Y., & Uprasen U. (2022). The effect of foreign direct investment on renewable energy consumption subject to the moderating effect of environmental regulation: Evidence from the BRICS countries. Renewable Energy, 201(2), 135-149. https://doi.org/10.1016/ j.renene.2022.11.066 google scholar
  • Yerdelen Tatoğlu, F. (2018a). Panel Zaman Serileri Analizi (2. bs). İstanbul: Beta Yayıncılık. google scholar
  • Yerdelen Tatoğlu, F. (2018b). Panel Veri Ekonometrisi (4. bs). İstanbul: Beta Yayıncılık. google scholar
  • Yerdelen Tatoğlu, F. (2020). Panel Veri Ekonometrisi (5. bs). İstanbul: Beta Yayıncılık. google scholar
  • Yiğit, E. (2017). BRICT Ülkelerinde Yenilenebilir Enerji Tüketimi, Karbon Emisyonları, Kentleşme ve Petrol Fiyatları Üzerine VAR Analizi. (Yüksek Lisans Tezi). Gaziosmanpaşa Üniversitesi Sosyal Bilimler Üniversitesi, Tokat. google scholar
  • Zarsky, L. (1999). Havens, Halos and Spaghetti: Untangling the Evidence About the Relationship Between Foreign Investment and the Environment. Foreign Direct Investment and the Environment, 13(8), 47-74. google scholar
  • Zellner, A. (1962). Estimators for Seemingly Unrelated Regression Equations: Some Exact Finite Sample Results. Journal of the American Statistical Association, 58(304), 977-992. https://doi.org/10.2307/2283326 google scholar
  • Zhao, M., Chen, Q., Dai, D., Fan, Y., & Xie, J. (2024). The Spillover Effect of Foreign Direct Investment on China’s High-Tech Industry Based on Interprovincial Panel Data. Sustainability, 16(4), 1660. https://doi.org/10.3390/su16041660 google scholar

Yenilenebilir Enerji Tüketiminin Belirleyicileri: BRICS-T Ülkeleri Örneği

Yıl 2025, Sayı: 42, 69 - 85, 25.06.2025
https://doi.org/10.26650/ekoist.2024.42.1570083

Öz

Hızla büyüyen ekonomileri ve nüfuslarıyla BRICS-T (Brezilya, Rusya, Hindistan, Çin, Güney Afrika ve Türkiye) ülkelerinin enerjiye olan ihtiyacı gün geçtikçe artmaktadır. Bu ihtiyacı gidermek için uygulayacakları enerji politikaları, söz konusu ülkelerin küresel güç dengelerindeki yerlerini belirlemede kritik rol oynayacaktır. Bu bağlamda BRICS-T ülkeleri artan bu enerji taleplerini karşılamak için fosil yakıtların sınırlı kaynakları yerine yenilenebilir enerji kay naklarına yönelmişlerdir. Yenilenebilir enerji kullanımını arttırmaya yönelik stratejiler geliştirmek ve sürdürülebilir enerji politikaları ortaya koymak için bu çalışmada, BRICS-T ülkelerinin yenilenebilir enerji tüketimi ile ekonomik büyüme, karbondioksit emisyonu, doğrudan yabancı yatırım girişleri arasındaki ilişkiyi belirlemek amaçlanmıştır. Bu amaçla, ülkelerin 1990-2020 dönemine ait yıllık verileri kullanılarak Yapısal Kırılmalı Panel-SUR yaklaşımıyla model tahminleri yapılmış ve analizler gerçekleştirilmiştir. Analiz sonuçlarına göre Brezilya’da 2015 yılı sonrası, Hindistan’da 2012 yılı sonrası yenilenebilir enerji tüketiminde istatistiksel olarak anlamlı bir artış yaşandığı tespit edilirken, Çin’de 1998 yılı sonrası, Güney Afrika’da 2001 yılı sonrası ve Türkiye’de 2000 yılı sonrası yenilenebilir enerji tüketiminde istatistiksel olarak anlamlı bir düşüş yaşandığı tespit edilmiştir. Ayrıca, yenilenebilir enerji tüketim modelinde bağımsız değişkenlerin etkilerinin ülke bazında farklılık gösterdiği dikkat çekmiştir. Bu çalışmayla, BRICS T ülkelerinde yenilenebilir enerji tüketiminin belirleyicileri ele alınarak; enerji güvenliğinin artması, karbondioksit emisyonlarının azalmasıyla daha temiz bir çevrede yaşanması ve ekosistemin korunması gibi kritik hedeflere ulaşmada önemli katkılar sağlanmaya çalışılmıştır.

Kaynakça

  • Arı, A. (2021). Yenilenebilir enerji ve doğrudan yabancı yatırımlar. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 23(40), 122-131. google scholar
  • Aksakal, M. (2011). Görünürde ilişkisiz regresyon modelleri ve turizm sektörü üzerine bir uygulama. (Yüksek Lisans Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Aksakal, M., & Arıcıgil Çilan, Ç. (2015). Türkiye’ye yönelik turizm talebinin görünürde ilişkisiz regresyon modelleri ile incelenmesi. Uluslararası İktisadi Ve İdari İncelemeler Dergisi (14), 235-256. Erişim adresi: https://dergipark.org.tr/tr/pub/ulikidince/issue/ 21614/232167 google scholar
  • Bai, J. (2009). Panel Data Models with Interactive Fixed Effects. Econometrica, 77(4), 1229-1279. https://doi.org/10.3982/ECTA6135 google scholar
  • Bai, J., & Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica, 66(1), 47-78. https:// doi.org/10.2307/2998540 google scholar
  • Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22. https://doi.org/10.1002/jae.659 google scholar
  • Baltagi, B. H. (2015). The Oxford Handbook of Panel Data. New York: Oxford University Press. google scholar
  • Bersvendsen, T., & Ditzen, J. (2021). Testing for slope heterogeneity in Stata. Stata Journal, 21(1), 51-80. https://doi.org/10.1177/1536867 X2110000 google scholar
  • Blomquist, J., & Westerlund, J. (2013). Testing slope homogeneity in large panels with serial correlation. Economics Letters, 121(3), 374-378. https://doi.org/10.1016/j.econlet.2013.09.012 google scholar
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253. https://doi.org/10.2307/2297111 google scholar
  • Chudik, A., & Pesaran, M. H. (2015). Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors. Journal of Econometrics, 188(2), 393-420. https://doi.org/10.1016/j.jeconom.2015.03.007 google scholar
  • Chudik, A., Pesaran, M. H., & Tosetti, E. (2011). Weak and strong cross-section dependence and estimation of large panels. Econometrics Journal, 14(1), C45-C90. https://doi.org/10.1111/j.1368-423X.2010.00330.x google scholar
  • Cole, M. A., Elliott, R. J., & Strobl, E. (2008). The environmental performance of firms: The role of foreign ownership, training, and experience. Ecological Economics, 65(3), 538-546. https://doi.org/10.1016/j.ecolecon.2007.07.025 google scholar
  • De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-datamodels. The Stata Journal, 6(4), 482-496. https://doi.org/10.1177/1536867X0600600403 google scholar
  • Ditzen, J., Karavias, Y., & Westerlund, J. (2021). Testing and Estimating Structural Breaks in Time Series and Panel Data in Stata. Discussion Papers, 21-14. google scholar
  • Erdinç, Z., & Aydınbaş, G. (2020). Yenilenebilir enerji tüketiminin belirleyicileri üzerine panel veri analizi. Journal of Social, Humanities and Administrative Sciences, 6(24), 346-358. http://dx.doi.org/10.31589/JOSHAS.266 google scholar
  • Erdugan, F. (2012). Görünürde İlişkisiz Regresyon Modellerinde Parametre Tahmin Yöntemleri. (Doktora Tezi). Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana. google scholar
  • Ertekin, M. N. (2023). Yenilenebilir ve Yenilenemeyen Enerji Tüketimi, CO2 Salımı ve Sürdürülebilir Kalkınma İlişkisi: Türkiye Örneği. (Yüksek Lisans Tezi). Bandırma Onyedi Eylül Üniversitesi Sosyal Bilimler Enstitüsü, Bandırma. google scholar
  • Gulıyev, H. (2023). Heterojen Yapısal Kırılmaları Dikkate Alan Heterojen Panel Veri Tahmincilerinin Türetilmesi: G7 Ülkelerinde Ekonomik Büyüme İle Enerji Tüketimi Arasındaki İlişki. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Üniversitesi, İstanbul. google scholar
  • Kurucu, A. A. (2016). Yenilenebilir Enerji Örneği Üzerinden Ekolojik Modernleşme Kuramı Tartışması. Ankara Üniversitesi Sosyal Bilimler Dergisi, 2, 1-20. https://doi.org/10.1501/sbeder_0000000120 google scholar
  • Özşahin, Ş., Mucuk, M., & Gerçeker, M. (2016). Yenilenebilir enerji ve ekonomik büyüme arasındaki ilişki: BRICS-T ülkeleri üzerine panel ARDL analizi. Siyaset, Ekonomi ve Yönetim Araştırmaları Dergisi, 4(11), 111-130. google scholar
  • Pesaran, H. M. (2015). Time Series and Panel Data Econometrics. Oxford University Press. google scholar
  • Pesaran, M. H. (2006). Estimation and ınference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x google scholar
  • Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/ 10.1016/j.jeconom.2007.05.010 google scholar
  • Swamy, P. (1970). Efficient Inference in a Random Coefficient Regression Model. Econometrica, 38(2), 311-323. https://doi.org/10.2307/ 1913012 google scholar
  • Tan, Y., & Uprasen U. (2022). The effect of foreign direct investment on renewable energy consumption subject to the moderating effect of environmental regulation: Evidence from the BRICS countries. Renewable Energy, 201(2), 135-149. https://doi.org/10.1016/ j.renene.2022.11.066 google scholar
  • Yerdelen Tatoğlu, F. (2018a). Panel Zaman Serileri Analizi (2. bs). İstanbul: Beta Yayıncılık. google scholar
  • Yerdelen Tatoğlu, F. (2018b). Panel Veri Ekonometrisi (4. bs). İstanbul: Beta Yayıncılık. google scholar
  • Yerdelen Tatoğlu, F. (2020). Panel Veri Ekonometrisi (5. bs). İstanbul: Beta Yayıncılık. google scholar
  • Yiğit, E. (2017). BRICT Ülkelerinde Yenilenebilir Enerji Tüketimi, Karbon Emisyonları, Kentleşme ve Petrol Fiyatları Üzerine VAR Analizi. (Yüksek Lisans Tezi). Gaziosmanpaşa Üniversitesi Sosyal Bilimler Üniversitesi, Tokat. google scholar
  • Zarsky, L. (1999). Havens, Halos and Spaghetti: Untangling the Evidence About the Relationship Between Foreign Investment and the Environment. Foreign Direct Investment and the Environment, 13(8), 47-74. google scholar
  • Zellner, A. (1962). Estimators for Seemingly Unrelated Regression Equations: Some Exact Finite Sample Results. Journal of the American Statistical Association, 58(304), 977-992. https://doi.org/10.2307/2283326 google scholar
  • Zhao, M., Chen, Q., Dai, D., Fan, Y., & Xie, J. (2024). The Spillover Effect of Foreign Direct Investment on China’s High-Tech Industry Based on Interprovincial Panel Data. Sustainability, 16(4), 1660. https://doi.org/10.3390/su16041660 google scholar
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Panel Veri Analizi
Bölüm ARAŞTIRMA MAKALESI
Yazarlar

Esra Topaloğlu 0000-0001-9374-5404

Çiğdem Demir Toker 0000-0003-3291-3085

Yayımlanma Tarihi 25 Haziran 2025
Gönderilme Tarihi 18 Ekim 2024
Kabul Tarihi 26 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Sayı: 42

Kaynak Göster

APA Topaloğlu, E., & Demir Toker, Ç. (2025). Yenilenebilir Enerji Tüketiminin Belirleyicileri: BRICS-T Ülkeleri Örneği. EKOIST Journal of Econometrics and Statistics(42), 69-85. https://doi.org/10.26650/ekoist.2024.42.1570083