Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 1, 1 - 7, 20.03.2025
https://doi.org/10.26701/ems.1590916

Öz

Proje Numarası

VEGA 2/0136/24, COST Action (CA20133)

Kaynakça

  • Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Andreson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., Hogli, & Zhu. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97-127. https://doi.org/10.1016/j.matt.2022.11.006
  • Rosenboom, J. G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117-137. https://doi.org/10.1038/s41578-021-00407-8
  • Popa, M. S., Frone, A. N., & Panaitescu, D. M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? International Journal of Biological Macromolecules, 207, 263-277. https://doi.org/10.1016/j.ijbiomac.2022.02.185
  • Balakrishnan, S., Atayo, A., & Asmatulu, E. (2024). Machine learning applications for electrospun nanofibers: A review. Journal of Materials Science, 59, 14095-15140. https://doi.org/10.1007/s10853-024-09994-7
  • Arrieta, M. P., Perdiguero, M., Fiori, S., Kenny, J. M., & Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179, 109226. https://doi.org/10.1016/j.polymdegradstab.2020.109226
  • Arrieta, M. P., Díez García, A., López, D., Fiori, S., & Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3), 346. https://doi.org/10.3390/nano9030346
  • Aydemir, D., & Gardner, D. J. (2020). Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 250, 116867. https://doi.org/10.1016/j.carbpol.2020.116867
  • Musioł, M., Rydz, J., Janeczek, H., Andrzejewski, J., Cristea, M., Musioł, K., Kampik, M., & Kowalczuk, M. (2024). (Bio)degradable biochar composites of PLA/P(3HB-co-4HB) commercial blend for sustainable future—Study on degradation and electrostatic properties. Polymers, 16(16), 2331. https://doi.org/10.3390/polym16162331
  • Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi.org/10.1016/j.chemosphere.2022.133671
  • Hu, L., Qin, R., Zhou, L., Hua, D., Li, K., & He, X. (2023). Effects of orange peel biochar and cipangopaludina chinensis shell powder on soil organic carbon transformation in citrus orchards. Agronomy, 13(7), 1801. https://doi.org/10.3390/agronomy13071801
  • Andrade, T. S., Vakros, J., Mantzavinos, D., & Lianos, P. (2020). Biochar obtained by carbonization of spent coffee grounds and its applications in the construction of an energy storage device. Chemical Engineering Journal Advances, 4, 100061. https://doi.org/10.1016/j.ceja.2020.100061
  • World Wide Fund for Nature. (Erişim tarihi: 24.11.2024). Fight climate change by preventing food waste. WWF Stories.
  • Opálková Šišková, A., Dvorák, T., Šimonová Baranyaiová, T., Šimon, E., Eckstein Andicsová, A., Švajdlenková, H., Opálek, A., Krížik, P., & Nosko, M. (2020). Simple and eco-friendly route from agro-food waste to water pollutants removal. Materials, 13(23), 5424. https://doi.org/10.3390/ma13235424
  • Maiza, M., Benaniba, M. T., & Massardier-Nageotte, V. (2015). Plasticizing effects of citrate esters on properties of poly(lactic acid). Journal of Polymer Engineering, 36(4), 371-380. https://doi.org/10.1515/polyeng-2015-0140
  • Radu, E. R., Panaitescu, D. M., Nicolae, C. A., Gabor, R. A., Raditoiu, V., Stoian, S., Alexandrescu, E., Frierascu, R., Ioana, C., & Radu, F. (2021). The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. Journal of Polymers and the Environment, 29, 2310–2320. https://doi.org/10.1007/s10924-020-02017-x
  • Mosnáčková, K., Danko, M., Šišková, A., Falco, L. M., Janigová, I., Chmela, Š., Vanovčanová, Z., Omaníková, L., Chodák, I., & Mosnáček, J. (2017). Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory aging conditions. RSC Advances, 7(74), 47132-47142. https://doi.org/10.1039/C7RA08869H

Electrospun biopolymer blends of poly(lactic acid) and poly(hydroxybutyrate) reinforced with biochar derived from kitchen waste

Yıl 2025, Cilt: 9 Sayı: 1, 1 - 7, 20.03.2025
https://doi.org/10.26701/ems.1590916

Öz

Biodegradable composites reinforced with natural fillers are exciting alternatives to expensive biodegradable polymers. This study aimed to investigate the effect of kitchen waste–derived biochar on the morphological, chemical, thermal, and mechanical properties of electrospun fibrous mats from a blend of biodegradable polymers poly(lactic acid) and poly(hydroxybutyrate). The electrospun neat PLA/PHB mats and mats with 5, 10, 15, 20, and 30 wt.% content of kitchen waste-derived biochar were produced. The techniques of scanning electron microscopy, Fourier transform infrared spectrometry analysis, thermogravimetric analysis, and different scanning calorimetry and tensile tests were used for the fundamental characterization of the produced electrospun mats. The results indicate that adding biochar to PLA/PHB does not significantly affect the properties of electrospun materials. This may be advantageous for packaging, filtration, or agriculture applications.

Proje Numarası

VEGA 2/0136/24, COST Action (CA20133)

Kaynakça

  • Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Andreson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., Hogli, & Zhu. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97-127. https://doi.org/10.1016/j.matt.2022.11.006
  • Rosenboom, J. G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117-137. https://doi.org/10.1038/s41578-021-00407-8
  • Popa, M. S., Frone, A. N., & Panaitescu, D. M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? International Journal of Biological Macromolecules, 207, 263-277. https://doi.org/10.1016/j.ijbiomac.2022.02.185
  • Balakrishnan, S., Atayo, A., & Asmatulu, E. (2024). Machine learning applications for electrospun nanofibers: A review. Journal of Materials Science, 59, 14095-15140. https://doi.org/10.1007/s10853-024-09994-7
  • Arrieta, M. P., Perdiguero, M., Fiori, S., Kenny, J. M., & Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179, 109226. https://doi.org/10.1016/j.polymdegradstab.2020.109226
  • Arrieta, M. P., Díez García, A., López, D., Fiori, S., & Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3), 346. https://doi.org/10.3390/nano9030346
  • Aydemir, D., & Gardner, D. J. (2020). Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 250, 116867. https://doi.org/10.1016/j.carbpol.2020.116867
  • Musioł, M., Rydz, J., Janeczek, H., Andrzejewski, J., Cristea, M., Musioł, K., Kampik, M., & Kowalczuk, M. (2024). (Bio)degradable biochar composites of PLA/P(3HB-co-4HB) commercial blend for sustainable future—Study on degradation and electrostatic properties. Polymers, 16(16), 2331. https://doi.org/10.3390/polym16162331
  • Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi.org/10.1016/j.chemosphere.2022.133671
  • Hu, L., Qin, R., Zhou, L., Hua, D., Li, K., & He, X. (2023). Effects of orange peel biochar and cipangopaludina chinensis shell powder on soil organic carbon transformation in citrus orchards. Agronomy, 13(7), 1801. https://doi.org/10.3390/agronomy13071801
  • Andrade, T. S., Vakros, J., Mantzavinos, D., & Lianos, P. (2020). Biochar obtained by carbonization of spent coffee grounds and its applications in the construction of an energy storage device. Chemical Engineering Journal Advances, 4, 100061. https://doi.org/10.1016/j.ceja.2020.100061
  • World Wide Fund for Nature. (Erişim tarihi: 24.11.2024). Fight climate change by preventing food waste. WWF Stories.
  • Opálková Šišková, A., Dvorák, T., Šimonová Baranyaiová, T., Šimon, E., Eckstein Andicsová, A., Švajdlenková, H., Opálek, A., Krížik, P., & Nosko, M. (2020). Simple and eco-friendly route from agro-food waste to water pollutants removal. Materials, 13(23), 5424. https://doi.org/10.3390/ma13235424
  • Maiza, M., Benaniba, M. T., & Massardier-Nageotte, V. (2015). Plasticizing effects of citrate esters on properties of poly(lactic acid). Journal of Polymer Engineering, 36(4), 371-380. https://doi.org/10.1515/polyeng-2015-0140
  • Radu, E. R., Panaitescu, D. M., Nicolae, C. A., Gabor, R. A., Raditoiu, V., Stoian, S., Alexandrescu, E., Frierascu, R., Ioana, C., & Radu, F. (2021). The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. Journal of Polymers and the Environment, 29, 2310–2320. https://doi.org/10.1007/s10924-020-02017-x
  • Mosnáčková, K., Danko, M., Šišková, A., Falco, L. M., Janigová, I., Chmela, Š., Vanovčanová, Z., Omaníková, L., Chodák, I., & Mosnáček, J. (2017). Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory aging conditions. RSC Advances, 7(74), 47132-47142. https://doi.org/10.1039/C7RA08869H
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları, Nanomalzemeler
Bölüm Research Article
Yazarlar

Alena Opálková šišková 0000-0003-4582-9114

Tomas Dvorak 0009-0005-7080-3567

Andrej Opalek 0000-0001-8311-254X

Katarina Mosnackova 0000-0003-1325-7449

Viera Dujnic 0000-0001-8647-7165

Naďa Beronská 0000-0003-1527-922X

Proje Numarası VEGA 2/0136/24, COST Action (CA20133)
Erken Görünüm Tarihi 4 Mart 2025
Yayımlanma Tarihi 20 Mart 2025
Gönderilme Tarihi 25 Kasım 2024
Kabul Tarihi 6 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Opálková šišková, A., Dvorak, T., Opalek, A., Mosnackova, K., vd. (2025). Electrospun biopolymer blends of poly(lactic acid) and poly(hydroxybutyrate) reinforced with biochar derived from kitchen waste. European Mechanical Science, 9(1), 1-7. https://doi.org/10.26701/ems.1590916

Dergi TR Dizin'de Taranmaktadır.

Flag Counter