Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication and Characterization of Sulfonated Polysulfone Membrane with Different Thicknesses for Proton Exchange Membrane Fuel Cell

Yıl 2024, Cilt: 3 Sayı: 3, 100 - 107, 30.09.2024

Öz

Membranes play a critical role in the performance of proton exchange membrane fuel cells. Membrane thicknesses have positive and negative effects on the characteristics of proton exchange membranes. In this study, sulfonated polysulfone (SPSf) polymer-based membranes with thicknesses of 50 µm, 100 µm, and 150 µm were fabricated, and their characteristic properties were investigated. Water uptake capacity, swelling ratio, proton conductivity, contact angle, chemical stability, and mechanical strength tests were carried out on the membranes. Maximum water uptake capacity and swelling ratio were 45.81% and 13.1% for 100 µm SPSf membrane, respectively. The results of contact angle analysis proved that all synthesized membranes were hydrophilic. Proton conductivity values were measured at different temperatures and solution environments. Significant decreases in resistance values and increases in proton conductivity were observed with decreasing membrane thickness. The increase in temperature and acid in the measurement conditions caused an increase in the proton conductivity value. The highest proton conductivity value was obtained as 0.1971 S/cm in 65 °C and 1 mM hydrochloric acid (HCl) aqueous solution environment in 50 µm SPSf membrane. It was determined that the chemical stability and mechanical strength decreased with the decrease in membrane thickness but remained within the appropriate limits.

Kaynakça

  • 1. Deshmukh, M. K. G., Sameeroddin, M., Abdul, D., & Sattar, M. A. (2023). Renewable energy in the 21st century: A review. Ma-terials Today: Proceedings, 80, 1756-1759.
  • 2. Xu, Y., & Zhao, F. (2023). Impact of energy depletion, human development, and income distribution on natural resource sus-tainability. Resources Policy, 83, 103531.
  • 3. Kocakulak, T., & Arslan, T. A. (2023). Investigation of the use of fuel cell hybrid systems for different purposes. Engineering Per-spective, 3(1), 1-8.
  • 4. Majeed, Y., Khan, M. U., Waseem, M., Zahid, U., Mahmood, F., Majeed, F., …& Raza, A. (2023). Renewable energy as an alter-native source for energy management in agriculture. Energy Re-ports, 10, 344-359.
  • 5. Zahedi, R., Sadeghitabar, E., Khazaee, M., Faryadras, R., & Ah-madi, A. (2024). Potentiometry of wind, solar and geothermal en-ergy resources and their future perspectives in Iran. Environment, Development and Sustainability, 1-27.
  • 6. Awad, M., Said, A., Saad, M. H., Farouk, A., Mahmoud, M. M., Alshammari, M. S., ... & Omar, A. I. (2024). A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alexan-dria Engineering Journal, 87, 213-239.
  • 7. Aniakor, C. O. (2024). Mapping renewable energy technologies (solar, wind and geothermal) to the United Nations’ Sustainable Development Goals (SDGs) to reveal and quantify synergies and tradeoffs. Available at SSRN: 10.2139/ssrn.4842618.
  • 8. Van Der Linden, F., Pahon, E., Morando, S., & Bouquain, D. (2023). A review on the proton-exchange membrane fuel cell break-in physical principles, activation procedures, and character-ization methods. Journal of Power Sources, 575, 233168.
  • 9. Bodkhe, R. G., Shrivastava, R. L., Soni, V. K., & Chadge, R. B. (2023). A review of renewable hydrogen generation and proton exchange membrane fuel cell technology for sustainable energy development. International Journal of Electrochemical Science, 18(5), 100108.
  • 10. Kumuk, B. (2019). A review of fuel cell types and applications. Turkish Journal of Energy Policy, 4(9), 1-9.
  • 11. Ramasamy, P., Muruganantham, B., Rajasekaran, S., Babu, B. D., Ramkumar, R., Marthanda, A. V. A., & Mohan, S. (2024). A comprehensive review on different types of fuel cell and its ap-plications. Bulletin of Electrical Engineering and Informatics, 13(2), 774-780.
  • 12. Shuhayeu, P., Martsinchyk, A., Martsinchyk, K., Szczęśniak, A., Szabłowski, Ł., Dybiński, O., & Milewski, J. (2024). Model-based quantitative characterization of anode microstructure and its effect on the performance of molten carbonate fuel cell. Inter-national Journal of Hydrogen Energy, 52, 902-915.
  • 13. Mancino, A. N., Menale, C., Vellucci, F., Pasquali, M., & Bubbi-co, R. PEM fuel cell applications in road transport. Energies, 16(17), 6129.
  • 14. Maher, A. R., & Sadiq, A. B. (2013). PEM fuel cells: Fundamen-tals, modeling, and applications. Create Space Independent Pub-lishing Platform, Washington.
  • 15. Amani, B., & Zanj, A. (2023). Analysis of the effects of the gas diffusion layer properties on the effectiveness of baffled flow channels in improving proton exchange membrane fuel cells per-formance. International Communications in Heat and Mass Transfer, 140, 106558.
  • 16. Zhou, S., Xie, G., Hu, H., & Ni, M. (2023). Simulation on water transportation in gas diffusion layer of a PEM fuel cell: Influence of non-uniform PTFE distribution. International Journal of Hy-drogen Energy, 48(28), 10644-10658.
  • 17. Zhang, G., Qu, Z., & Wang, Y. (2023). Proton exchange mem-brane fuel cell of integrated porous bipolar plate–gas diffusion layer structure: Entire morphology simulation. eTransportation, 17, 100250.
  • 18. Lufrano, F., Baglio, V., Staiti, P., Stassi, A., Aricò, A. S., & Anto-nucci, V. (2010). Investigation of sulfonated polysulfone mem-branes as electrolyte in a passive-mode direct methanol fuel cell mini-stack. Journal of Power Sources, 195(23), 7727-7733.
  • 19. Zhang, Y., Zheng, L., Liu, B., Wang, H., & Shi, H. (2019). Sul-fonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow bat-tery. Journal of Membrane Science, 584, 173-180.
  • 20. Liu, J. G., Zhao, T. S., Liang, Z. X., & Chen, R. (2006). Effect of membrane thickness on the performance and efficiency of pas-sive direct methanol fuel cells. Journal of Power Sources, 153(1), 61-67.
  • 21. Kocakulak, T., Taşkın, G., Calam, T. T., Solmaz, H., Calam, A., Arslan, T. A., & Şahin, F. (2024). A new nanocomposite mem-brane based on sulfonated polysulfone boron nitride for proton exchange membrane fuel cells: Its fabrication and characteriza-tion. Fuel, 374, 132476.
  • 22. Lufrano, F., Gatto, I., Staiti, P., Antonucci, V., & Passalacqua, E. (2001). Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ionics, 145(1-4), 47-51.
  • 23. Wang, G., Kang, J., Yang, S., Lu, M., & Wei, H. (2024). Influ-ence of structure construction on water uptake, swelling, and oxi-dation stability of proton exchange membranes. International Journal of Hydrogen Energy, 50, 279-311.
  • 24. Selim, A., Szijjártó, G. P., Románszki, L., & Tompos, A. (2022). Development of WO3-Nafion based membranes for enabling higher water retention at low humidity and enhancing PEMFC performance at intermediate temperature operation. Polymers. 14(12), 2492.
  • 25. Chen, F., Dong, W., Lin, F., Ren, W., & Ma, X. (2021). Compo-site proton exchange membrane with balanced proton conductivi-ty and swelling ratio improved by gradient-distributed POSS nan-ospheres. Composites Communications, 24, 100676.
  • 26. Li, J., Cui, N., Liu, D., Zhao, Z., Yang, F., Zhong, J., & Pang, J. (2024). SPEEK-co-PEK-x proton exchange membranes with con-trollable sulfonation degree for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 50, 606-617.
  • 27. Zhang, Y., Zhang, A., He, H., Fan, Y., Li, Y., Wang, S., & Li, S. (2024). Fabrication of an ultra-thin and ordered SPEEK proton exchange membrane by a Langmuir-Blodgett self-assembly pro-cess. Journal of Membrane Science, 690, 122196.
  • 28. Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applica-tions. International Journal of Hydrogen Energy, 35(17), 9349-9384.
  • 29. Lvovich, V. F. (2012). Impedance spectroscopy: Applications to electrochemical and dielectric phenomena. John Wiley & Sons.
  • 30. Karpenko, L. V., Demina, O. A., Dvorkina, G. A., Parshikov, S. B., Larchet, C., Auclair, B., & Berezina, N. P. (2001). Compara-tive study of methods used for the determination of electrocon-ductivity of ion-exchange membranes. Russian Journal of Elec-trochemistry, 37(3), 287-293. 31. Sistat, P., Kozmai, A., Pismenskaya, N., Larchet, C., Pourcelly, G., & Nikonenko, V. (2008). Low-frequency impedance of an ion-exchange membrane system. Electrochimica Acta, 53(22), 6380-6390.
  • 32. Zhang, Y., Zhu, C., Zhang, J., & Liu, Y. (2024). Negative impact of poly(acrylic acid) on proton conductivity of electrospun cata-lyst layers. Applied Energy, 357, 122511.
  • 33. Ng, W. W., San Thiam, H., Pang, Y. L., Lim, Y. S., Wong, J., & Saw, L. H. (2023). Self-sustainable, self-healable sulfonated gra-phene oxide incorporated nafion/poly(vinyl alcohol) proton ex-change membrane for direct methanol fuel cell applications. Journal of Environmental Chemical Engineering, 11(6), 111151.
  • 34. Bormashenko, E. Y. (2013). Wetting of real surfaces. Walter de Gruyter GmbH, Berlin.
  • 35. Cosgrove, T. (2005). Colloid science (Principles, methods and applications). Wiley-Blackwell Publishing Ltd., Oxford.
  • 36. Sigwadi, R., Dhlamini, M. S., Mokrani, T., & Nemavhola, F. (2019). Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon, 5(7), e02112.
  • 37. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., & Ogumi, Z. (2006). Gas crossover and membrane degrada-tion in polymer electrolyte fuel cells. Electrochimica Acta, 51(26), 5746-5753.
  • 38. Cheng, X., Zhang, J., Tang, Y., Song, C., Shen, J., Song, D., & Zhang, J. (2007). Hydrogen crossover in high-temperature PEM fuel cells. Journal of Power Sources, 167(1), 25-31.
  • 39. Oh, S., Kim, J., Lee, D., & Park, K. (2018). Variation of hydro-gen peroxide concentration during fenton reaction for test the membrane durability of PEMFC. Korean Chemical Engineering Research, 56(3), 315-319.
  • 40. Dafalla, A. M., & Jiang, F. (2018). Stresses and their impacts on proton exchange membrane fuel cells: A review. International Journal of Hydrogen Energy, 43(4), 2327-2348.
  • 41. Liu, W., Luo, N., Li, P., Yang, X., Dai, Z., Song, S., ... & Zhang, H. (2020). New sulfonated poly(ether ether ketone) composite membrane with the spherical bell-typed superabsorbent micro-spheres: Excellent proton conductivity and water retention prop-erties at low humidity. Journal of Power Sources, 452, 227823.
  • 42. Wallnöfer-Ogris, E., Poimer, F., Köll, R., Macherhammer, M. G., & Trattner, A. (2024). Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks–Mechanisms, influencing factors, consequences, and mitigation strategies. International Journal of Hydrogen Energy, 50, 1159-1182.
Yıl 2024, Cilt: 3 Sayı: 3, 100 - 107, 30.09.2024

Öz

Kaynakça

  • 1. Deshmukh, M. K. G., Sameeroddin, M., Abdul, D., & Sattar, M. A. (2023). Renewable energy in the 21st century: A review. Ma-terials Today: Proceedings, 80, 1756-1759.
  • 2. Xu, Y., & Zhao, F. (2023). Impact of energy depletion, human development, and income distribution on natural resource sus-tainability. Resources Policy, 83, 103531.
  • 3. Kocakulak, T., & Arslan, T. A. (2023). Investigation of the use of fuel cell hybrid systems for different purposes. Engineering Per-spective, 3(1), 1-8.
  • 4. Majeed, Y., Khan, M. U., Waseem, M., Zahid, U., Mahmood, F., Majeed, F., …& Raza, A. (2023). Renewable energy as an alter-native source for energy management in agriculture. Energy Re-ports, 10, 344-359.
  • 5. Zahedi, R., Sadeghitabar, E., Khazaee, M., Faryadras, R., & Ah-madi, A. (2024). Potentiometry of wind, solar and geothermal en-ergy resources and their future perspectives in Iran. Environment, Development and Sustainability, 1-27.
  • 6. Awad, M., Said, A., Saad, M. H., Farouk, A., Mahmoud, M. M., Alshammari, M. S., ... & Omar, A. I. (2024). A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alexan-dria Engineering Journal, 87, 213-239.
  • 7. Aniakor, C. O. (2024). Mapping renewable energy technologies (solar, wind and geothermal) to the United Nations’ Sustainable Development Goals (SDGs) to reveal and quantify synergies and tradeoffs. Available at SSRN: 10.2139/ssrn.4842618.
  • 8. Van Der Linden, F., Pahon, E., Morando, S., & Bouquain, D. (2023). A review on the proton-exchange membrane fuel cell break-in physical principles, activation procedures, and character-ization methods. Journal of Power Sources, 575, 233168.
  • 9. Bodkhe, R. G., Shrivastava, R. L., Soni, V. K., & Chadge, R. B. (2023). A review of renewable hydrogen generation and proton exchange membrane fuel cell technology for sustainable energy development. International Journal of Electrochemical Science, 18(5), 100108.
  • 10. Kumuk, B. (2019). A review of fuel cell types and applications. Turkish Journal of Energy Policy, 4(9), 1-9.
  • 11. Ramasamy, P., Muruganantham, B., Rajasekaran, S., Babu, B. D., Ramkumar, R., Marthanda, A. V. A., & Mohan, S. (2024). A comprehensive review on different types of fuel cell and its ap-plications. Bulletin of Electrical Engineering and Informatics, 13(2), 774-780.
  • 12. Shuhayeu, P., Martsinchyk, A., Martsinchyk, K., Szczęśniak, A., Szabłowski, Ł., Dybiński, O., & Milewski, J. (2024). Model-based quantitative characterization of anode microstructure and its effect on the performance of molten carbonate fuel cell. Inter-national Journal of Hydrogen Energy, 52, 902-915.
  • 13. Mancino, A. N., Menale, C., Vellucci, F., Pasquali, M., & Bubbi-co, R. PEM fuel cell applications in road transport. Energies, 16(17), 6129.
  • 14. Maher, A. R., & Sadiq, A. B. (2013). PEM fuel cells: Fundamen-tals, modeling, and applications. Create Space Independent Pub-lishing Platform, Washington.
  • 15. Amani, B., & Zanj, A. (2023). Analysis of the effects of the gas diffusion layer properties on the effectiveness of baffled flow channels in improving proton exchange membrane fuel cells per-formance. International Communications in Heat and Mass Transfer, 140, 106558.
  • 16. Zhou, S., Xie, G., Hu, H., & Ni, M. (2023). Simulation on water transportation in gas diffusion layer of a PEM fuel cell: Influence of non-uniform PTFE distribution. International Journal of Hy-drogen Energy, 48(28), 10644-10658.
  • 17. Zhang, G., Qu, Z., & Wang, Y. (2023). Proton exchange mem-brane fuel cell of integrated porous bipolar plate–gas diffusion layer structure: Entire morphology simulation. eTransportation, 17, 100250.
  • 18. Lufrano, F., Baglio, V., Staiti, P., Stassi, A., Aricò, A. S., & Anto-nucci, V. (2010). Investigation of sulfonated polysulfone mem-branes as electrolyte in a passive-mode direct methanol fuel cell mini-stack. Journal of Power Sources, 195(23), 7727-7733.
  • 19. Zhang, Y., Zheng, L., Liu, B., Wang, H., & Shi, H. (2019). Sul-fonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow bat-tery. Journal of Membrane Science, 584, 173-180.
  • 20. Liu, J. G., Zhao, T. S., Liang, Z. X., & Chen, R. (2006). Effect of membrane thickness on the performance and efficiency of pas-sive direct methanol fuel cells. Journal of Power Sources, 153(1), 61-67.
  • 21. Kocakulak, T., Taşkın, G., Calam, T. T., Solmaz, H., Calam, A., Arslan, T. A., & Şahin, F. (2024). A new nanocomposite mem-brane based on sulfonated polysulfone boron nitride for proton exchange membrane fuel cells: Its fabrication and characteriza-tion. Fuel, 374, 132476.
  • 22. Lufrano, F., Gatto, I., Staiti, P., Antonucci, V., & Passalacqua, E. (2001). Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ionics, 145(1-4), 47-51.
  • 23. Wang, G., Kang, J., Yang, S., Lu, M., & Wei, H. (2024). Influ-ence of structure construction on water uptake, swelling, and oxi-dation stability of proton exchange membranes. International Journal of Hydrogen Energy, 50, 279-311.
  • 24. Selim, A., Szijjártó, G. P., Románszki, L., & Tompos, A. (2022). Development of WO3-Nafion based membranes for enabling higher water retention at low humidity and enhancing PEMFC performance at intermediate temperature operation. Polymers. 14(12), 2492.
  • 25. Chen, F., Dong, W., Lin, F., Ren, W., & Ma, X. (2021). Compo-site proton exchange membrane with balanced proton conductivi-ty and swelling ratio improved by gradient-distributed POSS nan-ospheres. Composites Communications, 24, 100676.
  • 26. Li, J., Cui, N., Liu, D., Zhao, Z., Yang, F., Zhong, J., & Pang, J. (2024). SPEEK-co-PEK-x proton exchange membranes with con-trollable sulfonation degree for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 50, 606-617.
  • 27. Zhang, Y., Zhang, A., He, H., Fan, Y., Li, Y., Wang, S., & Li, S. (2024). Fabrication of an ultra-thin and ordered SPEEK proton exchange membrane by a Langmuir-Blodgett self-assembly pro-cess. Journal of Membrane Science, 690, 122196.
  • 28. Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applica-tions. International Journal of Hydrogen Energy, 35(17), 9349-9384.
  • 29. Lvovich, V. F. (2012). Impedance spectroscopy: Applications to electrochemical and dielectric phenomena. John Wiley & Sons.
  • 30. Karpenko, L. V., Demina, O. A., Dvorkina, G. A., Parshikov, S. B., Larchet, C., Auclair, B., & Berezina, N. P. (2001). Compara-tive study of methods used for the determination of electrocon-ductivity of ion-exchange membranes. Russian Journal of Elec-trochemistry, 37(3), 287-293. 31. Sistat, P., Kozmai, A., Pismenskaya, N., Larchet, C., Pourcelly, G., & Nikonenko, V. (2008). Low-frequency impedance of an ion-exchange membrane system. Electrochimica Acta, 53(22), 6380-6390.
  • 32. Zhang, Y., Zhu, C., Zhang, J., & Liu, Y. (2024). Negative impact of poly(acrylic acid) on proton conductivity of electrospun cata-lyst layers. Applied Energy, 357, 122511.
  • 33. Ng, W. W., San Thiam, H., Pang, Y. L., Lim, Y. S., Wong, J., & Saw, L. H. (2023). Self-sustainable, self-healable sulfonated gra-phene oxide incorporated nafion/poly(vinyl alcohol) proton ex-change membrane for direct methanol fuel cell applications. Journal of Environmental Chemical Engineering, 11(6), 111151.
  • 34. Bormashenko, E. Y. (2013). Wetting of real surfaces. Walter de Gruyter GmbH, Berlin.
  • 35. Cosgrove, T. (2005). Colloid science (Principles, methods and applications). Wiley-Blackwell Publishing Ltd., Oxford.
  • 36. Sigwadi, R., Dhlamini, M. S., Mokrani, T., & Nemavhola, F. (2019). Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon, 5(7), e02112.
  • 37. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., & Ogumi, Z. (2006). Gas crossover and membrane degrada-tion in polymer electrolyte fuel cells. Electrochimica Acta, 51(26), 5746-5753.
  • 38. Cheng, X., Zhang, J., Tang, Y., Song, C., Shen, J., Song, D., & Zhang, J. (2007). Hydrogen crossover in high-temperature PEM fuel cells. Journal of Power Sources, 167(1), 25-31.
  • 39. Oh, S., Kim, J., Lee, D., & Park, K. (2018). Variation of hydro-gen peroxide concentration during fenton reaction for test the membrane durability of PEMFC. Korean Chemical Engineering Research, 56(3), 315-319.
  • 40. Dafalla, A. M., & Jiang, F. (2018). Stresses and their impacts on proton exchange membrane fuel cells: A review. International Journal of Hydrogen Energy, 43(4), 2327-2348.
  • 41. Liu, W., Luo, N., Li, P., Yang, X., Dai, Z., Song, S., ... & Zhang, H. (2020). New sulfonated poly(ether ether ketone) composite membrane with the spherical bell-typed superabsorbent micro-spheres: Excellent proton conductivity and water retention prop-erties at low humidity. Journal of Power Sources, 452, 227823.
  • 42. Wallnöfer-Ogris, E., Poimer, F., Köll, R., Macherhammer, M. G., & Trattner, A. (2024). Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks–Mechanisms, influencing factors, consequences, and mitigation strategies. International Journal of Hydrogen Energy, 50, 1159-1182.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Hibrit ve Elektrikli Araçlar ve Güç Aktarma Organları
Bölüm Articles
Yazarlar

İrem Tanış

Turan Alp Arslan

Tolga Kocakulak

Gülşen Taşkın

Tuğba Tabanlıgil Calam

Hamit Solmaz

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 9 Mart 2024
Kabul Tarihi 18 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 3

Kaynak Göster

APA Tanış, İ., Arslan, T. A., Kocakulak, T., Taşkın, G., vd. (2024). Fabrication and Characterization of Sulfonated Polysulfone Membrane with Different Thicknesses for Proton Exchange Membrane Fuel Cell. Engineering Perspective, 3(3), 100-107. https://doi.org/10.29228/eng.pers.77899