Derleme
BibTex RIS Kaynak Göster

Hastalıkların bulaşmasında böceklerin rolü

Yıl 2025, Cilt: 8 Sayı: 1, 140 - 149, 30.06.2025
https://doi.org/10.55257/ethabd.1684877

Öz

Bu çalışma, insanlara ve hayvanlara hastalık yayan böcekleri inceleyerek, bu vektörleri önlemenin ve çevrede (Avrupa, Orta Doğu) meydana gelen enfeksiyonları tedavi etmenin yollarını belirlemek amacıyla inceliyor. Çevredeki değişikliklerin de kısa süre önce uzak bölgelerdeki bazı hastalıkların gelişmesinde rolü oldu. Sağlık sistemleri üzerinde önemli bir etki yaratıyor ve birçok yoksul ülkede mevcut olan az sayıdaki kaynaklara yük getiriyor. Daha önce etkilenmeyen bölgelerde vektörler yoluyla bulaşan hastalıkların ortaya çıkması ve son on yılda birçok ülkede eş zamanlı salgınların ortaya çıkması, bu hastalıkların dünya çapında küresel sağlığa sağladığı artan tehdidi açıkça göstermektedir. Tropikal bölgelerde ve başka yerlerde vektör kaynaklı hastalıklar, insan ölüm ve hastalık oranlarının önde gelen nedenleri arasındadır. Lenfatik filaryaz ve Chagas hastalığı, sıtma ve Chagas hastalığıyla mücadelede önemli ilerlemeler kaydedilmesine rağmen hızla yayılan hastalıklar arasında yer alıyor. Türkiye, özellikle tarım bölgelerinde Avrupa'daki hastalıklara ilişkin yüksek riskle karşı karşıyadır ve bu hastalıkların yayılmasını azaltmak için gelişmiş su koruma önlemlerini gerektirmektedir. Bu araştırma kontrol için verileri analiz etmektedir. Küresel hastalıkların çoğu vektör kaynaklıdır. Bazen bu korkunç hastalıkları taşıyan böcekleri kontrol altına almak yeterlidir. Anopheles gambiae, Triatominae, çeçe sinekleri, Glossina spp. ve kanla beslenen çeçe böceklerinin neden olduğu Afrika tripanozomiyazı sıtmaya, Chagas'a ve Afrika uyku hastalığına neden olur. Genetik araştırmalar yönetimsel hedefler önerir. Chagas hastalığı epidemiyolojisinin anlaşılması ve gelişmiş kontrol verileri, Afrika'da yoğun sıtma kontrolüne duyulan ihtiyacı göstermektedir. Son zamanlarda yapılan A. gambiae popülasyon genetik çalışması, vektör biyolojisini ilerletmektedir. Güveler uçuş akıntılarından ve rüzgardan etkilenirler ve hedeflerine zamanında ulaşabilmeleri için sürüklenip rüzgara uyum sağlamaları gerekir. Güveler rüzgarı tercih ediyor, ötücü kuşlardan daha iyi performans gösteriyor, göç yeteneklerini etkiliyor ve vektör kaynaklı hastalıklar nedeniyle küresel bir halk sağlığı riski oluşturuyor.

Proje Numarası

1

Kaynakça

  • Boubaker, R., Meige, P., Mialet, C., Ngarambe Buffat, C., Uwanyiligira, M., Widmer, F., ... & D’Acremont, V. (2016). Travellers’ profile, travel patterns and vaccine practices—a 10-year prospective study in a Swiss Travel Clinic. Journal of travel medicine, 23(1), tav017.‏
  • Caminade, C., McIntyre, K. M., & Jones, A. E. (2019). Impact of recent and future climate change on vector‐borne diseases. Annals of the New York Academy of Sciences, 1436(1), 157-173.‏
  • Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophy Transaction of the Royal Society B. 2015;370:20130552.
  • Center of Disease Control (CDC). 2022c. St. Louis encephalitis virus. Available at: https://www.cdc.gov/sle/faq/index.html. (Accessed on April 25, 2022).
  • Center of Disease Control (CDC). 2022d. West Nile dead birds. Available at: https://www.cdc.gov/westnile/dead-birds/index.html. (Accessed on April 25, 2022).
  • Center of Disease Control (CDC). 2022d. West Nile dead birds. Available at: https://www.cdc.gov/westnile/dead-birds/index.html. (Accessed on April 25, 2022).
  • Chapman, J. W., Nilsson, C., Lim, K. S., Bäckman, J., Reynolds, D. R., & Alerstam, T. (2016). Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. Journal of Animal Ecology, 85(1), 115-124.‏ 11.
  • Christensen AM, Pietralczyk E, Lopez JE, Brooks C, Schriefer ME, Wozniak E. Diagnosis and management of Borrelia turicatae infection in febrile soldier, Texas, USA. Emerging Infectious Diseases. 2017;23:883-884.
  • Crimmins, A., Balbus, J., Gamble, J. L., Beard, C. B., Bell, J. E., Dodgen, D., ... & Ziska, L. (2016). The impacts of climate change on human health in the United States: a scientific assessment. The impacts of climate change on human health in the United States: A scientific assessment.‏
  • Githeko, A. K., Ototo, E. N., & Guiyun, Y. (2012). Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk. Acta tropica, 121(1), 19-25.‏
  • Grácio, A. D. S., & Grácio, M. A. A. (2017). Plague: a millenary infectious disease reemerging in the XXI century. BioMed research international, 2017(1), 5696542.‏
  • Hernández-Triana, L. M., Jeffries, C. L., Mansfield, K. L., Carnell, G., Fooks, A. R., & Johnson, N. (2014). Emergence of West Nile virus lineage 2 in Europe: a review on the introduction and spread of a mosquito-borne disease. Frontiers in public health, 2, 271.‏
  • Kaya, M. (2011). Investigation of frequency of babesiosis among human who have tick bite history living in Tatvan region (Doctoral dissertation, Erciyes University).‏
  • Layton, D. S., Choudhary, A., & Bean, A. G. (2017). Breaking the chain of zoonoses through biosecurity in livestock. Vaccine, 35(44), 5967-5973.‏
  • Leblebicioglu, H., Ozaras, R., Fletcher, T. E., & Beeching, N. J. (2016). Crimean-Congo haemorrhagic fever in travellers: A systematic review. Travel medicine and infectious disease, 14(2), 73-80.‏
  • Lindsay, L. R., Ogden, N. H., & Schofield, S. W. (2015). Review of methods to prevent and reduce the risk of Lyme disease. Canada Communicable Disease Report, 41(6), 146.‏
  • Little, S. E., & Bowman, D. D. (2013). Vector-borne diseases. Georgis' Parasitology for Veterinarians-E-Book: Georgis' Parasitology for Veterinarians-E-Book, 241.‏
  • Mahyoub JA, Rehman H, Saggu S, Murugan K, Panneerselvam C, Alrefaei MSS, et al. Insecticide susceptibility in larval populations of the West Nile vector Culex pipiens L. (Diptera: Culicidae) in Saudi Arabia. Asian Pacific Journal of Tropical Biomedicine. 2016;6(5):390-395
  • Marcello N. Three Scenarios in insect-insect borne diseases. In: Nicoletti M, editor. Insect-insect Borne Diseases in the 21st Century. Academic Press; 2020. pp. 99-251.
  • Menz, M. H., Scacco, M., Bürki-Spycher, H. M., Williams, H. J., Reynolds, D. R., Chapman, J. W., & Wikelski, M. (2022). Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science, 377(6607), 764-768.‏
  • Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: Evidence and Implications. Environmental Health Perspective. 2013;121:1264-1272.
  • Njenga, S. M., Kanyi, H. M., Mutungi, F. M., Okoyo, C., Matendechero, H. S., Pullan, R. L., ... & Won, K. Y. (2017). Assessment of lymphatic filariasis prior to re-starting mass drug administration campaigns in coastal Kenya. Parasites & vectors, 10, 1-9.‏
  • Özbilgin, A., Töz, S., Harman, M., Topal, S. G., Uzun, S., Okudan, F., ... & Özbel, Y. (2019). The current clinical and geographical situation of cutaneous leishmaniasis based on species identification in Turkey. Acta Tropica, 190, 59-67.‏
  • Palma, V. A., Crespín, M. M., Hidalgo, P. A., González, Á. D., Lozada, D. A., Nacimba, G. A., ... & Borja-Cabrera, G. P. (2024). Diagnostic advances in tegumentary leishmaniasis: a narrative review from 2018 to 2023. Journal of Public Health and Emergency, 8.‏
  • Paz S. Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B. 2015;370(1665):20130561.
  • Rocklöv J, Dubrow R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nature Immunology. 2020;21:479-483.
  • Romiti, F., Casini, R., Magliano, A., Ermenegildi, A., & De Liberato, C. (2022). Aedes albopictus abundance and phenology along an altitudinal gradient in Lazio region (central Italy). Parasites & Vectors, 15(1), 92.‏
  • Uyar, Y., & Bakır, E. (2016). West Nile virus (WNV) and current status of West Nile Virus in Turkey.‏
  • WHO. A global brief on vector-borne diseases. Geneva, Switzerland, World Health Organization; 2014 Contract no: WHO/DCO/WHD/2014.1.
  • World Health Organization. (2012). Global strategy for dengue prevention and control 2012-2020.‏
  • World Health Organization. (2013). Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report on neglected diseases (No. WHO/HTM/NTD/2013.1). World Health Organization.‏
  • World Health Organization. (2014). A global brief on vector-borne diseases (No. WHO/DCO/WHD/2014.1). World Health Organization.‏
  • World Health Organization. (2023). World malaria report 2023. World Health Organization.‏

THE ROLE OF INSECTS IN DISEASE TRANSMISSION

Yıl 2025, Cilt: 8 Sayı: 1, 140 - 149, 30.06.2025
https://doi.org/10.55257/ethabd.1684877

Öz

This study looks at the insects that spread diseases to humans and animals to identify ways to prevent these vectors and treat infections that occur in the environment (Europe, Middle East). Alterations in the environment have also recently played a role development of a few illnesses in outlying regions. It has a significant impact on health systems and puts a burden on the few resources available in many poor nations. The emergence of illnesses transmitted by vectors in previously unaffected areas and simultaneous outbreaks across many countries in the last ten years clearly illustrates the escalating threat these diseases pose to global health worldwide. In tropical regions and elsewhere, vector-borne illnesses are among the leading causes of human mortality and morbidity. Lymphatic filariasis and Chagas disease are among the diseases causing rapid spread, despite significant progress in the fight against malaria and Chagas disease. Turkey faces high risks of European diseases, particularly in agricultural regions, necessitating improved water protection measures to mitigate the spread of these diseases. This research analyzes data for control. Most global diseases are vector-borne. Sometimes controlling the insects that carry these terrible diseases is enough. African trypanosomiasis, caused by Anopheles gambiae, Triatominae, tsetse flies, Glossina spp., and blood-feeding tsetse insects, causes malaria, Chagas, and African sleeping sickness. Genetic research suggests managerial targets. The understanding of Chagas disease epidemiology and improved control data indicate the need for massive malaria control in Africa. Recent A. gambiae population genetic study advances vector biology. Moths are influenced by flight currents and wind, and to reach their goal promptly, they need to drift and adapt to the wind. Moths prefer wind, outperforming songbirds, affecting their migratory abilities, and posing a global public health risk due to vector-bor.

Proje Numarası

1

Kaynakça

  • Boubaker, R., Meige, P., Mialet, C., Ngarambe Buffat, C., Uwanyiligira, M., Widmer, F., ... & D’Acremont, V. (2016). Travellers’ profile, travel patterns and vaccine practices—a 10-year prospective study in a Swiss Travel Clinic. Journal of travel medicine, 23(1), tav017.‏
  • Caminade, C., McIntyre, K. M., & Jones, A. E. (2019). Impact of recent and future climate change on vector‐borne diseases. Annals of the New York Academy of Sciences, 1436(1), 157-173.‏
  • Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophy Transaction of the Royal Society B. 2015;370:20130552.
  • Center of Disease Control (CDC). 2022c. St. Louis encephalitis virus. Available at: https://www.cdc.gov/sle/faq/index.html. (Accessed on April 25, 2022).
  • Center of Disease Control (CDC). 2022d. West Nile dead birds. Available at: https://www.cdc.gov/westnile/dead-birds/index.html. (Accessed on April 25, 2022).
  • Center of Disease Control (CDC). 2022d. West Nile dead birds. Available at: https://www.cdc.gov/westnile/dead-birds/index.html. (Accessed on April 25, 2022).
  • Chapman, J. W., Nilsson, C., Lim, K. S., Bäckman, J., Reynolds, D. R., & Alerstam, T. (2016). Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. Journal of Animal Ecology, 85(1), 115-124.‏ 11.
  • Christensen AM, Pietralczyk E, Lopez JE, Brooks C, Schriefer ME, Wozniak E. Diagnosis and management of Borrelia turicatae infection in febrile soldier, Texas, USA. Emerging Infectious Diseases. 2017;23:883-884.
  • Crimmins, A., Balbus, J., Gamble, J. L., Beard, C. B., Bell, J. E., Dodgen, D., ... & Ziska, L. (2016). The impacts of climate change on human health in the United States: a scientific assessment. The impacts of climate change on human health in the United States: A scientific assessment.‏
  • Githeko, A. K., Ototo, E. N., & Guiyun, Y. (2012). Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk. Acta tropica, 121(1), 19-25.‏
  • Grácio, A. D. S., & Grácio, M. A. A. (2017). Plague: a millenary infectious disease reemerging in the XXI century. BioMed research international, 2017(1), 5696542.‏
  • Hernández-Triana, L. M., Jeffries, C. L., Mansfield, K. L., Carnell, G., Fooks, A. R., & Johnson, N. (2014). Emergence of West Nile virus lineage 2 in Europe: a review on the introduction and spread of a mosquito-borne disease. Frontiers in public health, 2, 271.‏
  • Kaya, M. (2011). Investigation of frequency of babesiosis among human who have tick bite history living in Tatvan region (Doctoral dissertation, Erciyes University).‏
  • Layton, D. S., Choudhary, A., & Bean, A. G. (2017). Breaking the chain of zoonoses through biosecurity in livestock. Vaccine, 35(44), 5967-5973.‏
  • Leblebicioglu, H., Ozaras, R., Fletcher, T. E., & Beeching, N. J. (2016). Crimean-Congo haemorrhagic fever in travellers: A systematic review. Travel medicine and infectious disease, 14(2), 73-80.‏
  • Lindsay, L. R., Ogden, N. H., & Schofield, S. W. (2015). Review of methods to prevent and reduce the risk of Lyme disease. Canada Communicable Disease Report, 41(6), 146.‏
  • Little, S. E., & Bowman, D. D. (2013). Vector-borne diseases. Georgis' Parasitology for Veterinarians-E-Book: Georgis' Parasitology for Veterinarians-E-Book, 241.‏
  • Mahyoub JA, Rehman H, Saggu S, Murugan K, Panneerselvam C, Alrefaei MSS, et al. Insecticide susceptibility in larval populations of the West Nile vector Culex pipiens L. (Diptera: Culicidae) in Saudi Arabia. Asian Pacific Journal of Tropical Biomedicine. 2016;6(5):390-395
  • Marcello N. Three Scenarios in insect-insect borne diseases. In: Nicoletti M, editor. Insect-insect Borne Diseases in the 21st Century. Academic Press; 2020. pp. 99-251.
  • Menz, M. H., Scacco, M., Bürki-Spycher, H. M., Williams, H. J., Reynolds, D. R., Chapman, J. W., & Wikelski, M. (2022). Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science, 377(6607), 764-768.‏
  • Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: Evidence and Implications. Environmental Health Perspective. 2013;121:1264-1272.
  • Njenga, S. M., Kanyi, H. M., Mutungi, F. M., Okoyo, C., Matendechero, H. S., Pullan, R. L., ... & Won, K. Y. (2017). Assessment of lymphatic filariasis prior to re-starting mass drug administration campaigns in coastal Kenya. Parasites & vectors, 10, 1-9.‏
  • Özbilgin, A., Töz, S., Harman, M., Topal, S. G., Uzun, S., Okudan, F., ... & Özbel, Y. (2019). The current clinical and geographical situation of cutaneous leishmaniasis based on species identification in Turkey. Acta Tropica, 190, 59-67.‏
  • Palma, V. A., Crespín, M. M., Hidalgo, P. A., González, Á. D., Lozada, D. A., Nacimba, G. A., ... & Borja-Cabrera, G. P. (2024). Diagnostic advances in tegumentary leishmaniasis: a narrative review from 2018 to 2023. Journal of Public Health and Emergency, 8.‏
  • Paz S. Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B. 2015;370(1665):20130561.
  • Rocklöv J, Dubrow R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nature Immunology. 2020;21:479-483.
  • Romiti, F., Casini, R., Magliano, A., Ermenegildi, A., & De Liberato, C. (2022). Aedes albopictus abundance and phenology along an altitudinal gradient in Lazio region (central Italy). Parasites & Vectors, 15(1), 92.‏
  • Uyar, Y., & Bakır, E. (2016). West Nile virus (WNV) and current status of West Nile Virus in Turkey.‏
  • WHO. A global brief on vector-borne diseases. Geneva, Switzerland, World Health Organization; 2014 Contract no: WHO/DCO/WHD/2014.1.
  • World Health Organization. (2012). Global strategy for dengue prevention and control 2012-2020.‏
  • World Health Organization. (2013). Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report on neglected diseases (No. WHO/HTM/NTD/2013.1). World Health Organization.‏
  • World Health Organization. (2014). A global brief on vector-borne diseases (No. WHO/DCO/WHD/2014.1). World Health Organization.‏
  • World Health Organization. (2023). World malaria report 2023. World Health Organization.‏
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Derleme
Yazarlar

Hisham Almodares 0009-0007-2097-1444

Ebubekir Yüksel 0000-0002-6982-5874

Mustafa Imren 0000-0002-7217-9092

Proje Numarası 1
Erken Görünüm Tarihi 1 Temmuz 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 27 Nisan 2025
Kabul Tarihi 13 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Almodares, H., Yüksel, E., & Imren, M. (2025). THE ROLE OF INSECTS IN DISEASE TRANSMISSION. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 8(1), 140-149. https://doi.org/10.55257/ethabd.1684877