Derleme
BibTex RIS Kaynak Göster

Moleküler Biyoloji Yöntemlerinin Tıbbi Laboratuvarda Güncel Kullanımı

Yıl 2025, Cilt: 4 Sayı: 2, 40 - 53, 30.06.2025
https://doi.org/10.59518/farabimedj.1660424

Öz

Moleküler biyoloji, temelde DNA, RNA ve proteinlerin hücre içi sentezi, işlenmesi ve yıkımına ilişkin hücresel yolaklar ile bu süreçleri düzenleyen mekanizmaların bütününü inceleyen bir bilim dalıdır. Organizmanın en küçük birimi olan hücrelerde bulunan bu moleküllerin tespitine yönelik yöntemlerin klinik uygulamalara aktarılmasıyla, hastalıkların tanı, tedavi ve seyri daha hızlı ve duyarlı yöntemlerle belirlenebilir hale gelmiştir. Günümüzde hemen her hastalığın hücresel bir sebebi ve sonucu olduğu bilinmektedir. Moleküler biyoloji teknikleri, hastalıkların moleküler düzeydeki nedenlerinin aydınlatılması, hastalığa özgü biyobelirteçlerin keşfi ve kişiselleştirilmiş tedavi yaklaşımlarının geliştirilmesi açısından vazgeçilmez araçlardır. Moleküler tekniklerin gelişen teknolojiyle entegrasyonu, bu yöntemleri tanı ve tedavide önemli bir basamak haline getirmiştir. Bu derleme çalışmasının amacı, tıbbi laboratuvarlarda kullanıma uygun moleküler biyoloji yöntemlerine güncel bakış açısı sunmak, son yıllarda yapılan çalışmalardan örnekler vererek bu alandaki ilerlemeleri vurgulamak ve mevcut moleküler biyoloji yöntemlerini tıbbi labortuvarlarda kullanıma entegre etmenin önemine dikkat çekmektir. Ayrıca bu derleme; PCR, NGS, FISH, CRISPR, moleküler blotlama, ELISA ve immünboyama gibi moleküler teknolojilerin tıbbi kullanımlarına, hassasiyetlerine ve klinik uygulamalar üzerindeki katkılarına vurgu yapma yönüyle literatüre katkı sağlayarak, tıbbi laboratuvarlar ve moleküler biyoloji alanlarının ortak paydaşlarına değinmiş olacaktır. Ayrıca moleküler biyoloji tekniklerinin tıbbi laboratuvarlarda kullanılması üzerindeki sınırlılıkları ve gelecek beklentileri de tartışılacaktır.

Etik Beyan

Bu makale bir derleme çalışması olduğu için etik kurul onayı gerektirmemektedir.

Kaynakça

  • Speers DJ. Clinical applications of molecular biology for infectious diseases. Clin Biochem Rev. 2006;27(1):39-51.
  • Arikat S, Saboor M. Evolving role of clinical laboratories in precision medicine: a narrative review. J Lab Precis Med 2024;9:17.
  • Delidow BC, Lynch JP, Peluso JJ, White BA. Polymerase chain reaction : basic protocols. Methods Mol Biol. 1993;15:1-29.
  • Khehra N, Padda IS, Swift CJ. Polymerase Chain Reaction (PCR). Updated March 6, 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; January 2025–. Accessed March 6, 2025. https://www.ncbi.nlm.nih.gov/books/NBK589663
  • Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P. PCR past, present and future. Biotechniques. 2020;69(4):317-325.
  • Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current techniques, applications, and role in COVID-19 Diagnosis. Genes (Basel). 2022;13(12):2387.
  • Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231-250.
  • Dutta D, Naiyer S, Mansuri S, et al. COVID-19 diagnosis: A comprehensive review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics (Basel). 2022;12(6):1503.
  • Sugita S, Takase H, Nakano S. Practical use of multiplex and broad-range PCR in ophthalmology. Jpn J Ophthalmol. 2021;65(2):155-168.
  • Nyaruaba R, Mwaliko C, Dobnik D, et al. Digital PCR applications in the SARS-CoV-2/COVID-19 Era: a roadmap for future outbreaks. Clin Microbiol Rev. 2022;35(3):e00168-21.
  • Yugovich O, Bunce M, Harbison SA. Point-of-need species identification using non-PCR DNA-based approaches to combat wildlife crime. Forensic Sci Int Genet. 2025;78:103278.
  • Lee CL, Chuang CK, Chiu HC, et al. Understanding Genetic Screening: Harnessing Health Information to Prevent Disease Risks. Int J Med Sci. 2025;22(4):903-919.
  • Grody WW, Dunkel-Schetter C, Tatsugawa ZH, et al. PCR-based screening for cystic fibrosis carrier mutations in an ethnically diverse pregnant population. Am J Hum Genet. 1997;60(4):935-947.
  • Stern HJ. Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential. J Clin Med. 2014;3(1):280.
  • Satam H, Joshi K, Mangrolia U, et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel). 2023;12(7):997.
  • Katara A, Chand S, Chaudhary H, Chaudhry V, Chandra H, Dubey RC. Evolution and applications of next generation sequencing and its intricate relations with chromatographic and spectrometric techniques in modern day sciences. Journal of Chromatography Open. 2024;5:100121.
  • Ghoreyshi N, Heidari R, Farhadi A, et al. Next-generation sequencing in cancer diagnosis and treatment: clinical applications and future directions. Discov Oncol. 2025;16(1):578.
  • Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269.
  • Kamps R, Brandão RD, van den Bosch BJ, et al. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci. 2017;18(2):308.
  • Wang Y, Yang Q, Wang Z. The evolution of nanopore sequencing. Front Genet. 2015;5:449.
  • Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348-1365.
  • Shakoori AR. Fluorescence In Situ Hybridization (FISH) and Its Applications. Chromosome Structure and Aberrations. 2017;343-367.
  • Jensen E. Technical review: In situ hybridization. Anat Rec (Hoboken). 2014;297(8):1349-1353.
  • Harun A, Liu H, Song S, et al. Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants. Plants (Basel). 2023;12(15):2816.
  • Kudman S, Semaan A, Assaad MA, et al. Optimization of Fluorescence In Situ Hybridization Protocols in the Era of Precision Medicine. Curr Protoc. 2024;4(6):e1093.
  • Cui C, Shu W, Li P. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications. Front Cell Dev Biol. 2016;4:89.
  • Mohamed AM, Eid M, Eid O, et al. Generation of Dual-Color FISH probes targeting 9p21, Xp21, and 17p13.1 loci as diagnostic markers for some genetic disorders and cancer in Egypt. J Genet Eng Biotechnol. 2025;23(1):100449.
  • Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol. 2023;13:1097983.
  • Tommasi C, Airò G, Pratticò F, et al. Hormone Receptor-Positive/HER2-Positive Breast Cancer: Hormone Therapy and Anti-HER2 Treatment: An Update on Treatment Strategies. J Clin Med. 2024;13(7):1873.
  • Baez-Navarro X, Groenendijk FH, Oudijk L, et al. HER2-low across solid tumours: different incidences and definitions. Pathology. 2025;57(4):403-414.
  • Rose NC, Barrie ES, Malinowski J, et al. Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies [published correction appears in Genet Med. 2022 Sep;24(9):1992.
  • Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401-2415.
  • Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. CRISPR/Cas9 System: A bacterial tailor for genomic engineering. Genet Res Int. 2018;2018:3797214.
  • Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016;101(4):213.
  • Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications 2017 8:1. 2017;8(1):1-11.
  • Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther. 2023;8(1):36.
  • Allemailem KS, Almatroodi SA, Almatroudi A, et al. Recent advances in genome-editing technology with CRISPR/Cas9 variants and stimuli-responsive targeting approaches within tumor cells: A future perspective of cancer management. Int J Mol Sci. 2023;24(8):7052.
  • Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis. 2024;11(1):268-282.
  • Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol. 2021;59(3):e00745-20.
  • Ebrahimi S, Khanbabaei H, Abbasi S, et al. CRISPR-Cas System: A Promising Diagnostic Tool for Covid-19. Avicenna J Med Biotechnol. 2022;14(1):3.
  • Tanaka PP, Monteiro CJ, Duarte MJ, et al. The CRISPR-Cas9 system is used to edit the autoimmune regulator gene in vitro and in vivo. Adv Exp Med Biol. 2025;1471:269-283.
  • Li X, Wang Z, Man X, Dai X, Zhou Q, Zhang S. Research advances CRISPR gene editing technology generated models in the study of epithelial ovarian carcinoma. Gynecol Oncol. 2025;195:34-44.
  • Fang S, Wang G, Yang LH. [Advances in AAV-CRISPR/Cas9-Mediated Hemophilia A Gene Therapy --Review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023;31(6):1890-1893.
  • Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98(6):1141-1154.e7.
  • Thapar N, Eid MAF, Raj N, Kantas T, Billing HS, Sadhu D. Application of CRISPR/Cas9 in the management of Alzheimer’s disease and Parkinson’s disease: a review. Ann Med Surg (Lond). 2023;86(1):329-335.
  • Ciafaloni E, Kumar A, Liu K, et al. Age at onset of first signs or symptoms predicts age at loss of ambulation in Duchenne and Becker Muscular Dystrophy: Data from the MD STARnet. J Pediatr Rehabil Med. 2016;9(1):5-11.
  • Ou L, Przybilla MJ, Tăbăran AF, et al. A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther. 2020;27(5):226-236.
  • Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol. 2024;150(5):221.
  • Dourthe ME, Baruchel A. CAR T-cells for acute leukemias in children: current status, challenges, and future directions. Cancer Metastasis Rev. 2025;44(2):47.
  • Tariq H, Khurshid F, Khan MH, et al. CRISPR/Cas9 in the treatment of sickle cell disease (SCD) and its comparison with traditional treatment approaches: a review. Ann Med Surg (Lond). 2024;86(10):5938-5946.
  • Weaver SB, Singh D, Wilson KM. Gene Therapies for Sickle Cell Disease. J Pharm Technol. 2024;40(5):236-247.
  • Hnasko TS, Hnasko RM. The Western Blot. Methods Mol Biol. 2015;1318:87-96.
  • Yu M, Dandri M, Cheng G, Delaney WE 4th, Fletcher SP, Allweiss L. Rapid and Reliable Protein-Free HBV DNA Extraction and Sensitive Branched DNA Southern Blot Assay. Methods Mol Biol. 2024;2837:113-124.
  • Liang H, Shao Z, Shi Y, Wang X. Comparison of surgical and non-surgical treatment for scoliosis in Duchenne muscular dystrophy: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2025;145(1):219.
  • Bao JH, Lu WC, Duan H, et al. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol. 2022;13:933973.
  • Vo K, Shila S, Sharma Y, et al. Detection of mRNA Transcript Variants. Genes (Basel). 2025;16(3):343.
  • Owen C, Fader KA, Hassanein M. Western blotting: evolution of an old analytical method to a new quantitative tool for biomarker measurements. Bioanalysis. 2024;16(5):319-328.
  • He L, Lv Q, Luo J, et al. Heparanase inhibition mitigates bleomycin-induced pulmonary fibrosis in mice by reducing M2 macrophage polarization. Immunol Lett. 2025;274:107006.
  • Matson RS. ELISA-Based Biosensors. Methods Mol Biol. 2023;2612:225-238.
  • Kilimci U, Öndeş B, Sunna Ç, Uygun M, Aktaş Uygun D. Development of label-free immunosensors based on AuNPs-fullerene nanocomposites for the determination of cancer antigen 125. Bioelectrochemistry. 2025;163:108863.
  • Deshpande N, Suryawanshi PV, Tripathy S. Unveiling the Quest: Crafting an Enzyme-Linked Immunosorbent Assay (ELISA) Technique to Uncover COVID-19 Antibodies. Cureus. 2024;16(8):e66659.
  • Park G, Kim SS, Shim J, Lee SV. Brief guide to immunostaining. Mol Cells. 2025;48(1):100157.
  • Han Y, Liu Z, Song C. Fenugreek seed extract combined with acellular nerve allografts promotes peripheral nerve regeneration and neovascularization in sciatic nerve defects. Regen Ther. 2025;28:383-393.
  • Gao Y, Bai L, Zhou W, et al. PARP-1-regulated TNF-α expression in the dorsal root ganglia and spinal dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Brain Behav Immun. 2020;88:482-496.
  • Burke C, Glynn T, Jahangir C, et al. Exploring the prognostic and predictive potential of bacterial biomarkers in non-gastrointestinal solid tumors. Expert Rev Mol Diagn. 2025;25(4):117-128.
  • Youhanna S, Kemas AM, Wright SC, et al. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. Adv Sci (Weinh). 2025;12(3):e2407572.
  • Kumar A, Im K, Banjevic M, et al. Whole-genome risk prediction of common diseases in human preimplantation embryos. Nat Med. 2022;28(3):513-516.
  • Dakal TC, Dhakar R, Beura A, et al. Emerging methods and techniques for cancer biomarker discovery. Pathol Res Pract. 2024;262:155567.
  • Rajesh S, Cox MJ, Runau F. Molecular advances in pancreatic cancer: A genomic, proteomic and metabolomic approach. World J Gastroenterol. 2021;27(31):5171-5180.
  • Peter RM, Su X, Kong AN. Application of metabolomics in carcinogenesis and cancer prevention by dietary phytochemicals. Curr Pharmacol Rep. 2025;11(1):12.
  • Wang HYC, Donovan EM, Nisbet A, et al. The stability of imaging biomarkers in radiomics: a framework for evaluation. Phys Med Biol. 2019;64(16):165012.
  • Abushamma S, Yadete T, Nero N, et al. Definitions, diagnosis, and management of postoperative recurrence in Crohn's disease patients with permanent ileostomy-a systematic review and meta-analysis. J Crohns Colitis. 2025;19(4):jjaf041.
  • Xue M, Ke Y, Ren X, et al. Proteomic analysis of aqueous humor in patients with pathologic myopia. J Proteomics. 2021;234:104088.
  • Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, limitations, and applications for precision cancer research. Front Med (Lausanne). 2021;8:649896.
  • Selvakumar SC, Preethi KA, Ross K, et al. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer. 2022;21(1):83.

Current Use of Molecular Biology Methods in Medical Laboratory

Yıl 2025, Cilt: 4 Sayı: 2, 40 - 53, 30.06.2025
https://doi.org/10.59518/farabimedj.1660424

Öz

Molecular biology is a scientific discipline that primarily investigates the cellular pathways and regulatory mechanisms involved in the synthesis, processing, and degradation of DNA, RNA, and proteins within the cell. The translation of methods used to detect these molecules in cells—the smallest functional units of the organism—into clinical applications has enabled the diagnosis, treatment, and monitoring of diseases through more rapid and sensitive techniques. Today, it is well established that nearly every disease has a cellular cause and consequence. Molecular biology techniques are indispensable tools for elucidating the molecular basis of diseases, discovering disease-specific biomarkers, and developing personalized therapeutic strategies. The integration of molecular techniques with advancing technology has made these methods a critical step in diagnosis and therapy. This review aims to provide an up-to-date perspective on molecular biology techniques suitable for use in medical laboratories, highlight recent advances in the field by presenting examples from recent studies, and emphasize the importance of integrating current molecular biology methods into medical laboratory practice. Additionally, this review seeks to contribute to the literature by discussing the medical applications, sensitivities, and clinical impacts of key molecular technologies such as PCR, NGS, FISH, CRISPR, molecular blotting, ELISA, and immunostaining. Furthermore, the limitations of employing molecular biology techniques in medical laboratories and future expectations for the field will also be addressed, offering a comprehensive evaluation for stakeholders across both molecular biology and medical laboratory sciences.

Kaynakça

  • Speers DJ. Clinical applications of molecular biology for infectious diseases. Clin Biochem Rev. 2006;27(1):39-51.
  • Arikat S, Saboor M. Evolving role of clinical laboratories in precision medicine: a narrative review. J Lab Precis Med 2024;9:17.
  • Delidow BC, Lynch JP, Peluso JJ, White BA. Polymerase chain reaction : basic protocols. Methods Mol Biol. 1993;15:1-29.
  • Khehra N, Padda IS, Swift CJ. Polymerase Chain Reaction (PCR). Updated March 6, 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; January 2025–. Accessed March 6, 2025. https://www.ncbi.nlm.nih.gov/books/NBK589663
  • Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P. PCR past, present and future. Biotechniques. 2020;69(4):317-325.
  • Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current techniques, applications, and role in COVID-19 Diagnosis. Genes (Basel). 2022;13(12):2387.
  • Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231-250.
  • Dutta D, Naiyer S, Mansuri S, et al. COVID-19 diagnosis: A comprehensive review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics (Basel). 2022;12(6):1503.
  • Sugita S, Takase H, Nakano S. Practical use of multiplex and broad-range PCR in ophthalmology. Jpn J Ophthalmol. 2021;65(2):155-168.
  • Nyaruaba R, Mwaliko C, Dobnik D, et al. Digital PCR applications in the SARS-CoV-2/COVID-19 Era: a roadmap for future outbreaks. Clin Microbiol Rev. 2022;35(3):e00168-21.
  • Yugovich O, Bunce M, Harbison SA. Point-of-need species identification using non-PCR DNA-based approaches to combat wildlife crime. Forensic Sci Int Genet. 2025;78:103278.
  • Lee CL, Chuang CK, Chiu HC, et al. Understanding Genetic Screening: Harnessing Health Information to Prevent Disease Risks. Int J Med Sci. 2025;22(4):903-919.
  • Grody WW, Dunkel-Schetter C, Tatsugawa ZH, et al. PCR-based screening for cystic fibrosis carrier mutations in an ethnically diverse pregnant population. Am J Hum Genet. 1997;60(4):935-947.
  • Stern HJ. Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential. J Clin Med. 2014;3(1):280.
  • Satam H, Joshi K, Mangrolia U, et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel). 2023;12(7):997.
  • Katara A, Chand S, Chaudhary H, Chaudhry V, Chandra H, Dubey RC. Evolution and applications of next generation sequencing and its intricate relations with chromatographic and spectrometric techniques in modern day sciences. Journal of Chromatography Open. 2024;5:100121.
  • Ghoreyshi N, Heidari R, Farhadi A, et al. Next-generation sequencing in cancer diagnosis and treatment: clinical applications and future directions. Discov Oncol. 2025;16(1):578.
  • Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269.
  • Kamps R, Brandão RD, van den Bosch BJ, et al. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci. 2017;18(2):308.
  • Wang Y, Yang Q, Wang Z. The evolution of nanopore sequencing. Front Genet. 2015;5:449.
  • Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348-1365.
  • Shakoori AR. Fluorescence In Situ Hybridization (FISH) and Its Applications. Chromosome Structure and Aberrations. 2017;343-367.
  • Jensen E. Technical review: In situ hybridization. Anat Rec (Hoboken). 2014;297(8):1349-1353.
  • Harun A, Liu H, Song S, et al. Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants. Plants (Basel). 2023;12(15):2816.
  • Kudman S, Semaan A, Assaad MA, et al. Optimization of Fluorescence In Situ Hybridization Protocols in the Era of Precision Medicine. Curr Protoc. 2024;4(6):e1093.
  • Cui C, Shu W, Li P. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications. Front Cell Dev Biol. 2016;4:89.
  • Mohamed AM, Eid M, Eid O, et al. Generation of Dual-Color FISH probes targeting 9p21, Xp21, and 17p13.1 loci as diagnostic markers for some genetic disorders and cancer in Egypt. J Genet Eng Biotechnol. 2025;23(1):100449.
  • Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol. 2023;13:1097983.
  • Tommasi C, Airò G, Pratticò F, et al. Hormone Receptor-Positive/HER2-Positive Breast Cancer: Hormone Therapy and Anti-HER2 Treatment: An Update on Treatment Strategies. J Clin Med. 2024;13(7):1873.
  • Baez-Navarro X, Groenendijk FH, Oudijk L, et al. HER2-low across solid tumours: different incidences and definitions. Pathology. 2025;57(4):403-414.
  • Rose NC, Barrie ES, Malinowski J, et al. Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies [published correction appears in Genet Med. 2022 Sep;24(9):1992.
  • Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401-2415.
  • Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. CRISPR/Cas9 System: A bacterial tailor for genomic engineering. Genet Res Int. 2018;2018:3797214.
  • Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016;101(4):213.
  • Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications 2017 8:1. 2017;8(1):1-11.
  • Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther. 2023;8(1):36.
  • Allemailem KS, Almatroodi SA, Almatroudi A, et al. Recent advances in genome-editing technology with CRISPR/Cas9 variants and stimuli-responsive targeting approaches within tumor cells: A future perspective of cancer management. Int J Mol Sci. 2023;24(8):7052.
  • Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis. 2024;11(1):268-282.
  • Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol. 2021;59(3):e00745-20.
  • Ebrahimi S, Khanbabaei H, Abbasi S, et al. CRISPR-Cas System: A Promising Diagnostic Tool for Covid-19. Avicenna J Med Biotechnol. 2022;14(1):3.
  • Tanaka PP, Monteiro CJ, Duarte MJ, et al. The CRISPR-Cas9 system is used to edit the autoimmune regulator gene in vitro and in vivo. Adv Exp Med Biol. 2025;1471:269-283.
  • Li X, Wang Z, Man X, Dai X, Zhou Q, Zhang S. Research advances CRISPR gene editing technology generated models in the study of epithelial ovarian carcinoma. Gynecol Oncol. 2025;195:34-44.
  • Fang S, Wang G, Yang LH. [Advances in AAV-CRISPR/Cas9-Mediated Hemophilia A Gene Therapy --Review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023;31(6):1890-1893.
  • Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98(6):1141-1154.e7.
  • Thapar N, Eid MAF, Raj N, Kantas T, Billing HS, Sadhu D. Application of CRISPR/Cas9 in the management of Alzheimer’s disease and Parkinson’s disease: a review. Ann Med Surg (Lond). 2023;86(1):329-335.
  • Ciafaloni E, Kumar A, Liu K, et al. Age at onset of first signs or symptoms predicts age at loss of ambulation in Duchenne and Becker Muscular Dystrophy: Data from the MD STARnet. J Pediatr Rehabil Med. 2016;9(1):5-11.
  • Ou L, Przybilla MJ, Tăbăran AF, et al. A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther. 2020;27(5):226-236.
  • Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol. 2024;150(5):221.
  • Dourthe ME, Baruchel A. CAR T-cells for acute leukemias in children: current status, challenges, and future directions. Cancer Metastasis Rev. 2025;44(2):47.
  • Tariq H, Khurshid F, Khan MH, et al. CRISPR/Cas9 in the treatment of sickle cell disease (SCD) and its comparison with traditional treatment approaches: a review. Ann Med Surg (Lond). 2024;86(10):5938-5946.
  • Weaver SB, Singh D, Wilson KM. Gene Therapies for Sickle Cell Disease. J Pharm Technol. 2024;40(5):236-247.
  • Hnasko TS, Hnasko RM. The Western Blot. Methods Mol Biol. 2015;1318:87-96.
  • Yu M, Dandri M, Cheng G, Delaney WE 4th, Fletcher SP, Allweiss L. Rapid and Reliable Protein-Free HBV DNA Extraction and Sensitive Branched DNA Southern Blot Assay. Methods Mol Biol. 2024;2837:113-124.
  • Liang H, Shao Z, Shi Y, Wang X. Comparison of surgical and non-surgical treatment for scoliosis in Duchenne muscular dystrophy: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2025;145(1):219.
  • Bao JH, Lu WC, Duan H, et al. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol. 2022;13:933973.
  • Vo K, Shila S, Sharma Y, et al. Detection of mRNA Transcript Variants. Genes (Basel). 2025;16(3):343.
  • Owen C, Fader KA, Hassanein M. Western blotting: evolution of an old analytical method to a new quantitative tool for biomarker measurements. Bioanalysis. 2024;16(5):319-328.
  • He L, Lv Q, Luo J, et al. Heparanase inhibition mitigates bleomycin-induced pulmonary fibrosis in mice by reducing M2 macrophage polarization. Immunol Lett. 2025;274:107006.
  • Matson RS. ELISA-Based Biosensors. Methods Mol Biol. 2023;2612:225-238.
  • Kilimci U, Öndeş B, Sunna Ç, Uygun M, Aktaş Uygun D. Development of label-free immunosensors based on AuNPs-fullerene nanocomposites for the determination of cancer antigen 125. Bioelectrochemistry. 2025;163:108863.
  • Deshpande N, Suryawanshi PV, Tripathy S. Unveiling the Quest: Crafting an Enzyme-Linked Immunosorbent Assay (ELISA) Technique to Uncover COVID-19 Antibodies. Cureus. 2024;16(8):e66659.
  • Park G, Kim SS, Shim J, Lee SV. Brief guide to immunostaining. Mol Cells. 2025;48(1):100157.
  • Han Y, Liu Z, Song C. Fenugreek seed extract combined with acellular nerve allografts promotes peripheral nerve regeneration and neovascularization in sciatic nerve defects. Regen Ther. 2025;28:383-393.
  • Gao Y, Bai L, Zhou W, et al. PARP-1-regulated TNF-α expression in the dorsal root ganglia and spinal dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Brain Behav Immun. 2020;88:482-496.
  • Burke C, Glynn T, Jahangir C, et al. Exploring the prognostic and predictive potential of bacterial biomarkers in non-gastrointestinal solid tumors. Expert Rev Mol Diagn. 2025;25(4):117-128.
  • Youhanna S, Kemas AM, Wright SC, et al. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. Adv Sci (Weinh). 2025;12(3):e2407572.
  • Kumar A, Im K, Banjevic M, et al. Whole-genome risk prediction of common diseases in human preimplantation embryos. Nat Med. 2022;28(3):513-516.
  • Dakal TC, Dhakar R, Beura A, et al. Emerging methods and techniques for cancer biomarker discovery. Pathol Res Pract. 2024;262:155567.
  • Rajesh S, Cox MJ, Runau F. Molecular advances in pancreatic cancer: A genomic, proteomic and metabolomic approach. World J Gastroenterol. 2021;27(31):5171-5180.
  • Peter RM, Su X, Kong AN. Application of metabolomics in carcinogenesis and cancer prevention by dietary phytochemicals. Curr Pharmacol Rep. 2025;11(1):12.
  • Wang HYC, Donovan EM, Nisbet A, et al. The stability of imaging biomarkers in radiomics: a framework for evaluation. Phys Med Biol. 2019;64(16):165012.
  • Abushamma S, Yadete T, Nero N, et al. Definitions, diagnosis, and management of postoperative recurrence in Crohn's disease patients with permanent ileostomy-a systematic review and meta-analysis. J Crohns Colitis. 2025;19(4):jjaf041.
  • Xue M, Ke Y, Ren X, et al. Proteomic analysis of aqueous humor in patients with pathologic myopia. J Proteomics. 2021;234:104088.
  • Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, limitations, and applications for precision cancer research. Front Med (Lausanne). 2021;8:649896.
  • Selvakumar SC, Preethi KA, Ross K, et al. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer. 2022;21(1):83.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tıbbi Biyokimya ve Metabolomik (Diğer), Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derlemeler
Yazarlar

Sinan Tetikoğlu 0000-0002-7725-6034

Funda Bilgili Tetikoğlu 0000-0003-3734-4803

Selcen Çelik Uzuner 0000-0002-9558-7048

Erken Görünüm Tarihi 29 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 19 Mart 2025
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

AMA Tetikoğlu S, Bilgili Tetikoğlu F, Çelik Uzuner S. Moleküler Biyoloji Yöntemlerinin Tıbbi Laboratuvarda Güncel Kullanımı. Farabi Med J. Haziran 2025;4(2):40-53. doi:10.59518/farabimedj.1660424

*Dergiye gönderilecek yazılar aşağıda verilen örnek dosyalara göre hazırlanmalıdır. Dergi formatına uygun hazırlanmayan yazılar Yazar(lar)a iade edilecektir.

1. ÖZGÜN MAKALE ŞABLONU/ORIGINAL ARTICLE TEMPLATE

2. OLGU SUNUMU ŞABLONU/CASE REPORT TEMPLATE

3. DERLEME ŞABLONU/REVIEW TEMPLATE

4. BAŞLIK SAYFASI/TITLE PAGE

5. TELİF HAKKI TRANSFER FORMU/COPYRIGHT TRANSFER FORM

6. KAPAK YAZISI /COVER LETTER

**Uluslararası Tıp Dergileri Editörler Kurulu (ICMJE) yönergesi