Batı Anadolu Kabuk Deformasyon Modellemesi: GPS ve Depremsellik Verilerine Dayalı Bir Değerlendirme
Yıl 2025,
Cilt: 35 Sayı: 2, 815 - 828
Fatih Sünbül
,
M. Taner Şengün
Öz
Batı Anadolu, farklı tektonik rejimlerin ve deformasyon süreçlerinin etkisi altında bulunan karmaşık bir bölgedir. Bu çalışma, GPS verileri ve depremsellik analizlerini entegre ederek bölgenin deformasyon dinamiklerini detaylı bir şekilde incelemektedir. Çalışmada, Kuzey Anadolu Fay Zonu (KAFZ) boyunca ölçülen yüksek efektif gerinim oranlarının (~140 ngerinim/yıl) sıkışmalı rejimi yansıttığı, buna karşın Ege genişleme bölgesindeki pozitif dilatasyon oranlarının (+50 ngerinim/yıl) genişlemeli rejimin baskın olduğunu gösterdiği tespit edilmiştir. Bu bulgular, çalışmanın temel amacı olan Batı Anadolu’nun aktif tektonik yapısını belirleme ve bölgedeki sismotektonik riskleri değerlendirme hedefine doğrudan katkıda bulunmaktadır. Deprem analizleri, büyük depremlerin bölgesel deformasyon üzerindeki etkisini anlamak için kritik veriler sağlamış; Marmara Denizi doğusunda sıkışmalı, batısında ise genişlemeli rejimlerin hâkim olduğu belirlenmiştir. GPS hız vektörleri ve dilatasyon haritaları, enerji birikimi ve kabuk incelmesi süreçlerinin mekânsal dağılımını ayrıntılı olarak ortaya koymuştur. Bu sonuçlar, yüksek sismik risk taşıyan bölgelerin belirlenmesine ve risk azaltma stratejilerinin geliştirilmesine bilimsel bir temel oluşturmaktadır. Batı Anadolu'nun deformasyon süreçleri üzerine yapılan bu analizler, bölgesel sismik tehlikelerin azaltılması için kritik bir zemin sunmaktadır.
Etik Beyan
Etik Kurul Onayına gerek yoktur.
Destekleyen Kurum
İzmir Bakırçay Üniversitesi
Proje Numarası
İzmir Bakırçay Üniversitesi Kariyer Başlangıç Destek Projeleri (KBP) KBP.2021.007
Kaynakça
- Abrahamson, N. A. (2006, September). Seismic hazard assessment: Problems with current practice and future developments. In First European conference on earthquake engineering and seismology (pp. 3–8).
- Aktuğ, B., Tiryakioğlu, İ., Sözbilir, H., Özener, H., Özkaymak, Ç., Yiğit, C. Ö., ... and Softa, M. (2021). GPS-derived finite source mechanism of the 30 October 2020 Samos earthquake, Mw = 6.9, in the Aegean extensional region. Turkish Journal of Earth Sciences, 30(8), 718–737.
- Angus, D. A., Wilson, D. C., Sandvol, E., and Ni, J. F. (2006). Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkiye from S-wave receiver functions. Geophysical Journal International, 166(3), 1335–1346. https://doi.org/10.1111/j.1365-246X.2006.03070.x
- Armijo, R., Meyer, B., Navarro, S., King, G., and Barka, A. (2002). Asymmetric slip partitioning in the Sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian fault? Terra Nova, 14(2), 80–86.
- Atkinson, G. M. (2004, August). An overview of developments in seismic hazard analysis. In 13th World Conference on Earthquake Engineering (No. 5001, pp. 1–6).
- Barka, A. A., and Kadinsky-Cade, K. (1988). Strike-slip fault geometry in Turkiye and its influence on earthquake activity. Tectonics, 7(3), 663–684.
- Barka, A., and Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic, and seismicity data.
- Baskara, A. W., Sahara, D. P., Nugraha, A. D., Rusdin, A. A., Zulfakriza, Z., Widiyantoro, S., ... and Elly, E. (2023). Aftershock study of the 2019 Ambon earthquake using moment tensor inversion: Identification of fault reactivation in northern Banda, Indonesia. Earth, Planets and Space, 75(1), 124. https://doi.org/10.1186/s40623-023-01825-3.
- Bozkurt, E. (2001). Neotectonics of Turkiye – A synthesis. Geodinamica Acta, 14(1–3), 3–30.
- Bozkurt, E., and Mittwede, S. K. (2005). Introduction: Evolution of continental extensional tectonics of western Turkiye. Geodinamica Acta, 18(3–4), 153–165.
- Bozkurt, E., Winchester, J. A., Ruffet, G., and Rojay, B. (2008). Age and chemistry of Miocene volcanic rocks from the Kiraz Basin of the Küçük Menderes Graben: Its significance for the extensional tectonics of southwestern Anatolia, Turkiye. Geodinamica Acta, 21(5–6), 239–257.
- Candan, O., Akal, C., Koralay, O. E., Okay, A. I., Oberhänsli, R., Prelević, D., and Mertz-Kraus, R. (2016). Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkiye: Evidence for southward subduction of Paleotethys. Tectonophysics, 683, 349–366.
- DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.
- Dilek, Y., and Sandvol, E. (2009). Seismic structure, crustal architecture, and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region. Geological Society, London, Special Publications, 327(1), 127–160.
- Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., and Savascin, Y. (2002). On the extension in western Anatolia and the Aegean Sea. Journal of the Virtual Explorer, 8, 169–183.
- Ekström, G., Nettles, M., and Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.
- Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., and Çan, T. (2018). Active fault database of Turkiye. Bulletin of Earthquake Engineering, 16(8), 3229–3275.
- Erdik, M. (2001). Report on 1999 Kocaeli and Düzce (Turkiye) earthquakes. In Structural control for civil and infrastructure engineering (pp. 149–186).
- Eyübağil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B., and Özkaymak, Ç. (2021). Present day strike-slip deformation within the southern part of the İzmir-Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment in Western Anatolia. Turkish Journal of Earth Sciences, 30(2), Article 1. https://doi.org/10.3906/yer-2005-26.
- Frohlich, C., and Davis, S. D. (1999). How well constrained are well-constrained T, B, and P axes in moment tensor catalogs? Journal of Geophysical Research: Solid Earth, 104(B3), 4901–4910.
- Guns, K., Sandwell, D., Xu, X., Bock, Y., Yong, L. W., and Smith‐Konter, B. (2024). Seismic moment accumulation rate from geodesy: Constraining Kostrov thickness in southern California. Journal of Geophysical Research: Solid Earth, 129(5), e2023JB027939. https://doi.org/10.1029/2023JB027939
- Haines, A. J., and Holt, W. E. (1993). A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. Journal of Geophysical Research: Solid Earth, 98(B7), 12057–12082.
- Hergert, T., and Heidbach, O. (2010). Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nature Geoscience, 3(2), 132–136. https://doi.org/10.1038/ngeo739
- Hubert-Ferrari, A., Armijo, R., King, G., Meyer, B., and Barka, A. (2002). Morphology, displacement, and slip rates along the North Anatolian Fault, Turkiye. Journal of Geophysical Research: Solid Earth, 107(B10), ETG-9.
- Jackson, J., and McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93(1), 45–73.
- Jolivet, L., and Faccenna, C. (2000). Mediterranean extension and the Africa-Eurasia collision. Tectonics, 19, 1095–1106.
- Karabulut, H., Paul, A., Özbakır, A. D., Ergün, T., and Şentürk, S. (2019). A new crustal model of the Anatolia–Aegean domain: Evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, 218(1), 57–73.
- Kiratzi, A., Papazachos, C., Özacar, A., Pinar, A., Kkallas, C., and Sopaci, E. (2021). Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data. Bulletin of Earthquake Engineering, 1–23.
- Kostrov, B. V. (1974). Seismic moment and energy of earthquakes, and seismic flow of rock. Izvestiya, Academy of Sciences, USSR, Physics of the Solid Earth, 1, 23–44.
- Kreemer, C., Haines, J., Holt, W. E., Blewitt, G., and Lavallee, D. (2000). On the determination of a global strain rate model. Earth, Planets and Space, 52(10), 765–770.
- Kürçer, A., Özaksoy, V., Özalp, S., Güldoğan, Ç. U., Özdemir, E., and Duman, T. Y. (2017). The Manyas fault zone (southern Marmara region, NW Turkiye): Active tectonics and paleoseismology. Geodinamica Acta, 29(1), 42–61.
- Le Pichon, X., Şengör, A. M. C., Demirbağ, E., Rangin, C., Imren, C., Armijo, R., ... and Tok, B. (2001). The active main Marmara fault. Earth and Planetary Science Letters, 192(4), 595–616.
- Manzo, R., Cesca, S., Galluzzo, D., La Rocca, M., Picozzi, M., and Di Maio, R. (2024). Source analysis of low frequency seismicity at Mt. Vesuvius by a hybrid moment tensor inversion. Journal of Volcanology and Geothermal Research, 454, 108173. https://doi.org/10.1016/j.jvolgeores.2023.108173.
- Maurer, J., and Materna, K. (2023). Quantification of geodetic strain rate uncertainties and implications for seismic hazard estimates. Geophysical Journal International, 234(3), 2128-2142. https://doi.org/10.1093/gji/ggad313
- McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., ... and Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719.
- McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109–185.
- Mutlu, A. K., and Karabulut, H. (2011). Anisotropic Pn tomography of Turkiye and adjacent regions. Geophysical Journal International, 187(3), 1743–1758. https://doi.org/10.1111/j.1365-246X.2011.05015.x
- Nyst, M., and Thatcher, W. (2004). New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research: Solid Earth, 109(B11).
- Okay, A. I. (2000). Was the late Triassic orogeny in Turkiye caused by the collision of an oceanic plateau? In E. Bozkurt, J. A. Winchester, and J. D. Piper (Eds.), Tectonics and Magmatism in Turkiye and the Surrounding Area (Special Publication 173, pp. 25–42). Geological Society, London.
- Okay, A. I., and Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5–8), 1051–1076.
- Okay, A. I., and Tüysüz, O. (1999). Tethyan sutures of northern Turkiye. Geological Society, London, Special Publications, 156(1), 475–515.
- Poyraz, F., and Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13, 844. https://doi.org/10.1007/s12517-020-05834-5
- Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., ... and Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).
- Reilinger, R., and McClusky, S. (2011). Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International, 186(3), 971–979.
- Rösler, B., Stein, S., and Spencer, B. (2023). When are non-double-couple components of seismic moment tensors reliable? Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.418
- Savage, J. C., and Simpson, R. W. (1997). Surface strain accumulation and the seismic moment tensor. Bulletin of the Seismological Society of America, 87(5), 1345–1353.
- Slemmons, D. B., and Depolo, C. M. (1986). Evaluation of active faulting and associated hazards. Active Tectonics, 1986, 45–62.
- Stampfli, G. M., and Borel, G. D. (2002). A plate tectonic model for the Palaeozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 169, 17–33.
- Şengör, A. C., and Canitez, N. (1982). The North Anatolian Fault. Alpine-Mediterranean Geodynamics, 7, 205–216.
Şengör, A. M. C. (1985). Geology: East Asian tectonic collage. Nature, 318(6041), 16–17.
- Şengör, A. M. C., Altıner, D., Cin, A., Ustaömer, T., and Hsü, K. J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications, 37(1), 119–181.
- Şengör, A. M. C., Tüysüz, O., Imren, C., Sakınç, M., Eyidoğan, H., Görür, N., ... and Rangin, C. (2005). The North Anatolian fault: A new look. Annual Review of Earth and Planetary Sciences, 33(1), 37–112.
- Şengör, A. M. C., and Yılmaz, Y. (1981). Tethyan evolution of Turkiye: A plate tectonic approach. Tectonophysics, 75, 81–241.
- Tatar, O., Poyraz, F., Gürsoy, H., Cakir, Z., Ergintav, S., Akpınar, Z., ... and Yavaşoğlu, H. (2012). Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkiye) from GPS measurements. Tectonophysics, 518, 55–62.
- Taymaz, T., Jackson, J., and McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433–490.
- Taymaz, T., Yilmaz, Y., and Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: Introduction (Vol. 291, No. 1, pp. 1–16). London: The Geological Society of London.
- Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515.
- Westaway, B. (1994). Present-day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research, 99, 12071–12090.
- Yılmaz, Y. (2017). Major problems of Western Anatolian geology. Active Global Seismology, 141–187.
Yilmaztürk, A., Bayrak, Y., and Çakir, Ö. (1998). Crustal seismicity in and around Turkiye. Natural Hazards, 18, 253–267.
Yolsal-Cevikbilen, S., Taymaz, T., and Helvacı, C. (2014). Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkiye): Neotectonics, seismotectonics, and geodynamic implications. Tectonophysics, 635, 100–124.
- Zhu, L., Mitchell, B. J., Akyol, N., Çemen, I., and Kekovali, K. (2006). Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research: Solid Earth, 111(B1).
- Zhu L, Akyol N, Mitchell BJ, Sözbilir H (2006). Seismotectonics of Western Turkiye from high resolution earthquake relocations and moment tensor determinations. Geophysical Research Letters 33, L07316. doi: 10.1 029/2006GL025842
- Poyraz, F., and Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13, 844. https://doi.org/10.1007/s12517-020-05834-5.
Western Anatolia Crust Deformation Modelling: An Evaluation Based on GPS and Seismic Data
Yıl 2025,
Cilt: 35 Sayı: 2, 815 - 828
Fatih Sünbül
,
M. Taner Şengün
Öz
Western Anatolia represents a complex region influenced by diverse tectonic regimes and deformation processes. This study integrates GPS velocity data and seismic analyses to investigate the deformation dynamics of the region comprehensively. High effective strain rates (~140 nanostrain/year) along the North Anatolian Fault Zone (NAFZ) highlight compressional regimes, while positive dilation rates (+50 nanostrain/year) in the Aegean extension zone emphasize crustal thinning under extensional forces. These findings directly address the study’s primary aim of identifying the active tectonic framework of Western Anatolia and assessing seismic hazards in the region. Seismic analysis further underscores the influence of significant earthquakes on regional deformation, revealing compressional dominance in the eastern Marmara Sea and extensional regimes in its western segments. The integration of GPS velocity fields and dilation maps delineates the spatial distribution of energy accumulation and crustal thinning across Western Anatolia. These results provide a scientific basis for identifying high-seismic-risk areas and developing risk mitigation strategies. This comprehensive analysis of deformation processes offers critical insights into seismic hazard assessment and risk reduction strategies for Western Anatolia.
Proje Numarası
İzmir Bakırçay Üniversitesi Kariyer Başlangıç Destek Projeleri (KBP) KBP.2021.007
Kaynakça
- Abrahamson, N. A. (2006, September). Seismic hazard assessment: Problems with current practice and future developments. In First European conference on earthquake engineering and seismology (pp. 3–8).
- Aktuğ, B., Tiryakioğlu, İ., Sözbilir, H., Özener, H., Özkaymak, Ç., Yiğit, C. Ö., ... and Softa, M. (2021). GPS-derived finite source mechanism of the 30 October 2020 Samos earthquake, Mw = 6.9, in the Aegean extensional region. Turkish Journal of Earth Sciences, 30(8), 718–737.
- Angus, D. A., Wilson, D. C., Sandvol, E., and Ni, J. F. (2006). Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkiye from S-wave receiver functions. Geophysical Journal International, 166(3), 1335–1346. https://doi.org/10.1111/j.1365-246X.2006.03070.x
- Armijo, R., Meyer, B., Navarro, S., King, G., and Barka, A. (2002). Asymmetric slip partitioning in the Sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian fault? Terra Nova, 14(2), 80–86.
- Atkinson, G. M. (2004, August). An overview of developments in seismic hazard analysis. In 13th World Conference on Earthquake Engineering (No. 5001, pp. 1–6).
- Barka, A. A., and Kadinsky-Cade, K. (1988). Strike-slip fault geometry in Turkiye and its influence on earthquake activity. Tectonics, 7(3), 663–684.
- Barka, A., and Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic, and seismicity data.
- Baskara, A. W., Sahara, D. P., Nugraha, A. D., Rusdin, A. A., Zulfakriza, Z., Widiyantoro, S., ... and Elly, E. (2023). Aftershock study of the 2019 Ambon earthquake using moment tensor inversion: Identification of fault reactivation in northern Banda, Indonesia. Earth, Planets and Space, 75(1), 124. https://doi.org/10.1186/s40623-023-01825-3.
- Bozkurt, E. (2001). Neotectonics of Turkiye – A synthesis. Geodinamica Acta, 14(1–3), 3–30.
- Bozkurt, E., and Mittwede, S. K. (2005). Introduction: Evolution of continental extensional tectonics of western Turkiye. Geodinamica Acta, 18(3–4), 153–165.
- Bozkurt, E., Winchester, J. A., Ruffet, G., and Rojay, B. (2008). Age and chemistry of Miocene volcanic rocks from the Kiraz Basin of the Küçük Menderes Graben: Its significance for the extensional tectonics of southwestern Anatolia, Turkiye. Geodinamica Acta, 21(5–6), 239–257.
- Candan, O., Akal, C., Koralay, O. E., Okay, A. I., Oberhänsli, R., Prelević, D., and Mertz-Kraus, R. (2016). Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkiye: Evidence for southward subduction of Paleotethys. Tectonophysics, 683, 349–366.
- DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.
- Dilek, Y., and Sandvol, E. (2009). Seismic structure, crustal architecture, and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region. Geological Society, London, Special Publications, 327(1), 127–160.
- Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., and Savascin, Y. (2002). On the extension in western Anatolia and the Aegean Sea. Journal of the Virtual Explorer, 8, 169–183.
- Ekström, G., Nettles, M., and Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.
- Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., and Çan, T. (2018). Active fault database of Turkiye. Bulletin of Earthquake Engineering, 16(8), 3229–3275.
- Erdik, M. (2001). Report on 1999 Kocaeli and Düzce (Turkiye) earthquakes. In Structural control for civil and infrastructure engineering (pp. 149–186).
- Eyübağil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B., and Özkaymak, Ç. (2021). Present day strike-slip deformation within the southern part of the İzmir-Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment in Western Anatolia. Turkish Journal of Earth Sciences, 30(2), Article 1. https://doi.org/10.3906/yer-2005-26.
- Frohlich, C., and Davis, S. D. (1999). How well constrained are well-constrained T, B, and P axes in moment tensor catalogs? Journal of Geophysical Research: Solid Earth, 104(B3), 4901–4910.
- Guns, K., Sandwell, D., Xu, X., Bock, Y., Yong, L. W., and Smith‐Konter, B. (2024). Seismic moment accumulation rate from geodesy: Constraining Kostrov thickness in southern California. Journal of Geophysical Research: Solid Earth, 129(5), e2023JB027939. https://doi.org/10.1029/2023JB027939
- Haines, A. J., and Holt, W. E. (1993). A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. Journal of Geophysical Research: Solid Earth, 98(B7), 12057–12082.
- Hergert, T., and Heidbach, O. (2010). Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nature Geoscience, 3(2), 132–136. https://doi.org/10.1038/ngeo739
- Hubert-Ferrari, A., Armijo, R., King, G., Meyer, B., and Barka, A. (2002). Morphology, displacement, and slip rates along the North Anatolian Fault, Turkiye. Journal of Geophysical Research: Solid Earth, 107(B10), ETG-9.
- Jackson, J., and McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93(1), 45–73.
- Jolivet, L., and Faccenna, C. (2000). Mediterranean extension and the Africa-Eurasia collision. Tectonics, 19, 1095–1106.
- Karabulut, H., Paul, A., Özbakır, A. D., Ergün, T., and Şentürk, S. (2019). A new crustal model of the Anatolia–Aegean domain: Evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, 218(1), 57–73.
- Kiratzi, A., Papazachos, C., Özacar, A., Pinar, A., Kkallas, C., and Sopaci, E. (2021). Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data. Bulletin of Earthquake Engineering, 1–23.
- Kostrov, B. V. (1974). Seismic moment and energy of earthquakes, and seismic flow of rock. Izvestiya, Academy of Sciences, USSR, Physics of the Solid Earth, 1, 23–44.
- Kreemer, C., Haines, J., Holt, W. E., Blewitt, G., and Lavallee, D. (2000). On the determination of a global strain rate model. Earth, Planets and Space, 52(10), 765–770.
- Kürçer, A., Özaksoy, V., Özalp, S., Güldoğan, Ç. U., Özdemir, E., and Duman, T. Y. (2017). The Manyas fault zone (southern Marmara region, NW Turkiye): Active tectonics and paleoseismology. Geodinamica Acta, 29(1), 42–61.
- Le Pichon, X., Şengör, A. M. C., Demirbağ, E., Rangin, C., Imren, C., Armijo, R., ... and Tok, B. (2001). The active main Marmara fault. Earth and Planetary Science Letters, 192(4), 595–616.
- Manzo, R., Cesca, S., Galluzzo, D., La Rocca, M., Picozzi, M., and Di Maio, R. (2024). Source analysis of low frequency seismicity at Mt. Vesuvius by a hybrid moment tensor inversion. Journal of Volcanology and Geothermal Research, 454, 108173. https://doi.org/10.1016/j.jvolgeores.2023.108173.
- Maurer, J., and Materna, K. (2023). Quantification of geodetic strain rate uncertainties and implications for seismic hazard estimates. Geophysical Journal International, 234(3), 2128-2142. https://doi.org/10.1093/gji/ggad313
- McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., ... and Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719.
- McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109–185.
- Mutlu, A. K., and Karabulut, H. (2011). Anisotropic Pn tomography of Turkiye and adjacent regions. Geophysical Journal International, 187(3), 1743–1758. https://doi.org/10.1111/j.1365-246X.2011.05015.x
- Nyst, M., and Thatcher, W. (2004). New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research: Solid Earth, 109(B11).
- Okay, A. I. (2000). Was the late Triassic orogeny in Turkiye caused by the collision of an oceanic plateau? In E. Bozkurt, J. A. Winchester, and J. D. Piper (Eds.), Tectonics and Magmatism in Turkiye and the Surrounding Area (Special Publication 173, pp. 25–42). Geological Society, London.
- Okay, A. I., and Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5–8), 1051–1076.
- Okay, A. I., and Tüysüz, O. (1999). Tethyan sutures of northern Turkiye. Geological Society, London, Special Publications, 156(1), 475–515.
- Poyraz, F., and Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13, 844. https://doi.org/10.1007/s12517-020-05834-5
- Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., ... and Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).
- Reilinger, R., and McClusky, S. (2011). Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International, 186(3), 971–979.
- Rösler, B., Stein, S., and Spencer, B. (2023). When are non-double-couple components of seismic moment tensors reliable? Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.418
- Savage, J. C., and Simpson, R. W. (1997). Surface strain accumulation and the seismic moment tensor. Bulletin of the Seismological Society of America, 87(5), 1345–1353.
- Slemmons, D. B., and Depolo, C. M. (1986). Evaluation of active faulting and associated hazards. Active Tectonics, 1986, 45–62.
- Stampfli, G. M., and Borel, G. D. (2002). A plate tectonic model for the Palaeozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 169, 17–33.
- Şengör, A. C., and Canitez, N. (1982). The North Anatolian Fault. Alpine-Mediterranean Geodynamics, 7, 205–216.
Şengör, A. M. C. (1985). Geology: East Asian tectonic collage. Nature, 318(6041), 16–17.
- Şengör, A. M. C., Altıner, D., Cin, A., Ustaömer, T., and Hsü, K. J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications, 37(1), 119–181.
- Şengör, A. M. C., Tüysüz, O., Imren, C., Sakınç, M., Eyidoğan, H., Görür, N., ... and Rangin, C. (2005). The North Anatolian fault: A new look. Annual Review of Earth and Planetary Sciences, 33(1), 37–112.
- Şengör, A. M. C., and Yılmaz, Y. (1981). Tethyan evolution of Turkiye: A plate tectonic approach. Tectonophysics, 75, 81–241.
- Tatar, O., Poyraz, F., Gürsoy, H., Cakir, Z., Ergintav, S., Akpınar, Z., ... and Yavaşoğlu, H. (2012). Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkiye) from GPS measurements. Tectonophysics, 518, 55–62.
- Taymaz, T., Jackson, J., and McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433–490.
- Taymaz, T., Yilmaz, Y., and Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: Introduction (Vol. 291, No. 1, pp. 1–16). London: The Geological Society of London.
- Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515.
- Westaway, B. (1994). Present-day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research, 99, 12071–12090.
- Yılmaz, Y. (2017). Major problems of Western Anatolian geology. Active Global Seismology, 141–187.
Yilmaztürk, A., Bayrak, Y., and Çakir, Ö. (1998). Crustal seismicity in and around Turkiye. Natural Hazards, 18, 253–267.
Yolsal-Cevikbilen, S., Taymaz, T., and Helvacı, C. (2014). Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkiye): Neotectonics, seismotectonics, and geodynamic implications. Tectonophysics, 635, 100–124.
- Zhu, L., Mitchell, B. J., Akyol, N., Çemen, I., and Kekovali, K. (2006). Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research: Solid Earth, 111(B1).
- Zhu L, Akyol N, Mitchell BJ, Sözbilir H (2006). Seismotectonics of Western Turkiye from high resolution earthquake relocations and moment tensor determinations. Geophysical Research Letters 33, L07316. doi: 10.1 029/2006GL025842
- Poyraz, F., and Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13, 844. https://doi.org/10.1007/s12517-020-05834-5.