Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of paclitaxel on cachexia-related gene AZGP1 expression during adipocyte differentiation

Yıl 2025, Cilt: 6 Sayı: 1, 28 - 34, 30.04.2025
https://doi.org/10.51753/flsrt.1609937

Öz

Cancer cachexia, a syndrome characterized by involuntary weight loss, affects skeletal muscles and leads to adipose tissue loss. Activation of adipose tissue during cancer cachexia may contribute to cachexia through mechanisms like ZAG, a biomarker for adipose atrophy. This study aimed to analyze the effect of paclitaxel on adipogenesis and cachexia-related genes in cancer cachexia. The study involved human preadipocyte cells grown in a commercial medium, with 50 nM paclitaxel applied on different days for differentiation. The 15th day, marking the completion of differentiation was analyzed for lipid accumulation and PPARγ and AZGP1 gene expression. The study found that paclitaxel during adipogenesis suppressed differentiation and lipid accumulation in human preadipocytes. It was determined that there was no change in the expression level of the AZGP1 gene in day 3 preadipocytes given paclitaxel starting from the 3rd day of differentiation. It was determined that PPARγ gene expression was suppressed in day 0 preadipocytes given paclitaxel starting from the first day of differentiation compared to the control group. As a result, it has been determined that paclitaxel may contribute to adipose tissue loss in cancer cachexia by suppressing the differentiation of preadipocytes and lipid accumulation during adipogenesis. The change caused by paclitaxel in the expression of genes such as AZGP1 and PPARγ during adipogenesis needs to be analyzed in further studies.

Kaynakça

  • Bao, Y., Bing, C., Hunter, L., Jenkins, J. R., Wabitsch, M., & Trayhurn, P. (2005). Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes. FEBS letters, 579(1), 41-47.
  • Batista Jr, M. L., Olivan, M., Alcantara, P. S. M., Sandoval, R., Peres, S. B., Neves, R. X., ... & Seelaender, M. (2013). Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine, 61(2), 532-539.
  • Beluzi, M., Peres, S. B., Henriques, F. S., Sertie, R. A., Franco, F. O., Santos, K. B., ... & Batista Jr, M. L. (2015). Pioglitazone treatment increases survival and prevents body weight loss in tumor–bearing animals: possible anti-cachectic effect. PloS one, 10(3), e0122660.
  • Bing, C., Russell, S., Becket, E., Pope, M., Tisdale, M. J., Trayhurn, P., & Jenkins, J. R. (2006). Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. British journal of cancer, 95(8), 1028-1037.
  • Burgi, W., & Schmid, K. (1961). Preparation and properties of Zn-α2-glycoprotein of normal human plasma. Journal of Biological Chemistry, 236(4), 1066-1074.
  • Cabrera, A. R., Parker, K., Snoke, D. B., Hammig, B., & Greene, N. P. (2025). Landscape of Clinical Trials in Cancer Cachexia: Assessment of Trends From 1995-2024. medRxiv, 2025-03.
  • Chang, Y. H., Liu, H. W., Chu, T. Y., Wen, Y. T., Tsai, R. K., & Ding, D. C. (2017). Cisplatin-impaired adipogenic differentiation of adipose mesenchymal stem cells. Cell Transplantation, 26(6), 1077-1087.
  • Choi, J. Y., Kim, Y. J., Shin, J. S., Choi, E. B., Kim, Y., Kim, M. G., ... & Kim, J. G. (2025). Integrative metabolic profiling of hypothalamus and skeletal muscle in a mouse model of cancer cachexia. Biochemical and Biophysical Research Communications, 151766.
  • Choron, R. L., Chang, S., Khan, S., Villalobos, M. A., Zhang, P., Carpenter, J. P., ... & Liu, Y. (2015). Paclitaxel impairs adipose stem cell proliferation and differentiation. Journal of Surgical Research, 196(2), 404-415.
  • Chu, D. T., Malinowska, E., Gawronska-Kozak, B., & Kozak, L. P. (2014). Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. Journal of Biological Chemistry, 289(26), 18478-18488.
  • Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378.
  • Deng, L., Bao, W., Zhang, B., Zhang, S., Chen, Z., Zhu, X., ... & Chen, G. (2023). AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway. Cell Death & Disease, 14(9), 590.
  • Di Sebastiano, K. M., & Mourtzakis, M. (2012). A critical evaluation of body composition modalities used to assess adipose and skeletal muscle tissue in cancer. Applied Physiology, Nutrition, and Metabolism, 37(5), 811-821.
  • Ebadi, M., & Mazurak, V. C. (2014). Evidence and mechanisms of fat depletion in cancer.Nutrients, 6(11), 5280-5297.
  • Elattar, S., Dimri, M., & Satyanarayana, A. (2018). The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. The FASEB Journal, 32(9), 4727.
  • Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., ... & Baracos, V. E. (2011). Definition and classification of cancer cachexia: an international consensus. The lancet oncology, 12(5), 489-495.
  • Huang, T. H., Wu, T. H., Guo, Y. H., Li, T. L., Chan, Y. L., & Wu, C. J. (2019). The concurrent treatment of Scutellaria baicalensis Georgi enhances the therapeutic efficacy of cisplatin but also attenuates chemotherapy-induced cachexia and acute kidney injury. Journal of Ethnopharmacology, 243, 112075.
  • Goncalves, M. D., Hwang, S. K., Pauli, C., Murphy, C. J., Cheng, Z., Hopkins, B. D., ... & Cantley, L. C. (2018). Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proceedings of the National Academy of Sciences, 115(4), E743-E752.
  • Khan, M. S., Butler, J., & Anker, M. (2025). Weight gain among cancer patients receiving chemotherapy—facts and numbers. Journal of Cachexia, Sarcopenia and Muscle, 16(1), e13694.
  • Kim, H. Y., Jang, H. J., Muthamil, S., Shin, U. C., Lyu, J. H., Kim, S. W., Go, Y., Park, S. H., Lee, H. G., & Park, J. H. (2024). Novel insights into regulators and functional modulators of adipogenesis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 177, 117073.
  • Kurtulus, E. M., Karis, D., Ercan, A. M., & Konukoglu, D. (2024). Zinc Alpha-2 Glycoprotein, Acylated Ghrelin, and Zinc Levels in Prediabetics. in vivo, 38(2), 975-981.
  • Langer, H. T., Ramsamooj, S., Dantas, E., Murthy, A., Ahmed, M., Ahmed, T., ... & Goncalves, M. D. (2024). Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Acta Physiologica, e14167.
  • Laviano, A., Seelaender, M., Sanchez-Lara, K., Gioulbasanis, I., Molfino, A., & Fanelli, F. R. (2011). Beyond anorexia-cachexia. Nutrition and modulation of cancer patients' metabolism: supplementary, complementary or alternative anti-neoplastic therapy?. European Journal of Pharmacology, 668, S87-S90.
  • Lopes, M. A., Franco, F. O., Henriques, F., Peres, S. B., & Batista, M. L. (2018). LLC tumor cells-derivated factors reduces adipogenesis in co-culture system. Heliyon, 4(7).
  • Mannelli, M., Gamberi, T., Magherini, F., & Fiaschi, T. (2020). The adipokines in cancer cachexia. International Journal of Molecular Sciences, 21(14), 4860.
  • Martínez-Navarro, I., Vilchis-Gil, J., Cossío-Torres, P. E., Hernández-Mendoza, H., Klünder-Klünder, M., Layseca-Espinosa, E., Galicia-Cruz, O. G., & Rios-Lugo, M. J. (2024). Serum Zinc-Alpha-2 Glycoprotein and Zinc Levels and Their Relationship with Insulin Resistance and Biochemical Parameters in Overweight and Obese Children. Biological trace element research. Advance online publication.
  • Mracek, T., Stephens, N. A., Gao, D., Bao, Y., Ross, J. A., Ryden, M., ... & Bing, C. (2011). Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. British Journal of Cancer, 104(3), 441-447.
  • Mota, I. N. R., Satari, S., Marques, I. S., Santos, J. M. O., & Medeiros, R. (2024). Adipose tissue rearrangement in cancer cachexia: The involvement of β3-adrenergic receptor associated pathways. Biochimica et biophysica acta. Reviews on cancer, 1879(3), 189103.
  • Muliawati, Y., Haroen, H., & Rotty, L. W. (2012). Cancer anorexia-cachexia syndrome. pathogenesis, 5(5), 154-162.
  • Ni, J., & Zhang, L. (2020). Cancer cachexia: definition, staging, and emerging treatments. Cancer Management and Research, 5597-5605.
  • Panagiotou, G., Babazadeh, D., Mazza, D. F., Azghadi, S., Cawood, J. M., Rosenberg, A. S., ... & Chondronikola, M. (2025). Brown adipose tissue is associated with reduced weight loss and risk of cancer cachexia: A retrospective cohort study. Clinical Nutrition, 45, 262-269.
  • Peixoto da Silva, S., Santos, J. M., Costa e Silva, M. P., Gil da Costa, R. M., & Medeiros, R. (2020). Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. Journal of Cachexia, Sarcopenia and Muscle, 11(3), 619-635.
  • Pendás, A. M., Matilla, T., Uría, J. A., Freije, J. P., Fueyo, A., Estivill, X., & López-Otín, C. (1994). Mapping of the human Zn-α2-glycoprotein gene (AZGP1) to chromosome 7q22 by in situ hybridization. Cytogenetic and Genome Research, 66(4), 263-266.
  • Senyigit, A., Durmus, S., Tabak, O., Oruc, A., Uzun, H., & Ekinci, I. (2024). The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. Journal of clinical medicine, 13(20), 6126.
  • Qiu, S., Wu, Q., Wang, H., Liu, D., Chen, C., Zhu, Z., ... & Yang, M. (2024). AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation . Nature Communications, 15(1), 3377. Qin, H., Yuan, Y., Yuan, M., Wang, H., & Yang, Y. (2024). Degradation of AZGP1 suppresses the progression of breast cancer cells via TRIM25. Environmental Toxicology, 39(2), 882-889.
  • Unver, S., Biyik, I., Akman, T., Simsek, E., Kucuk, H., Kaplan, A., ... & Caycı, Y. T. (2024). Effect of acute anaerobic performance on zinc alpha 2 glycoprotein, apelin and lipasin levels. PeerJ, 12, e18093.
  • Wen, R. M., Qiu, Z., Marti, G. E. W., Peterson, E. E., Marques, F. J. G., Bermudez, A., Wei, Y., Nolley, R., Lam, N., Polasko, A. L., Chiu, C. L., Zhang, D., Cho, S., Karageorgos, G. M., McDonough, E., Chadwick, C., Ginty, F., Jung, K. J., Machiraju, R., Mallick, P., … Brooks, J. D. (2024). AZGP1 deficiency promotes angiogenesis in prostate cancer. Journal of translational medicine, 22(1), 383.
  • Xu, M., Jin, X., & Shen, Z. (2024). ZAG promotes colorectal cancer cell proliferation and epithelial–mesenchymal transition by promoting lipid synthesis. Open Life Sciences, 19(1), 20221007.
  • Yeung, D. C., Lam, K. S., Wang, Y., Tso, A. W., & Xu, A. (2009). Serum zinc-α2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. The Journal of Clinical Endocrinology & Metabolism, 94(7), 2531-2536.
  • You, J. S., Lee, Y. J., Kim, K. S., Kim, S. H., & Chang, K. J. (2014). Antiobesity and hypolipidaemic effects of Nelumbo nucifera seed ethanol extract in human pre‐adipocytes and rats fed a high‐fat diet. Journal of the Science of Food and Agriculture, 94(3), 568-575.
  • Yun, H., Jeong, H. R., Kim, D. Y., You, J. E., Lee, J. U., Kang, D. H., ... & Jin, D. H. (2024). Degradation of AZGP1 suppresses apoptosis and facilitates cholangiocarcinoma tumorigenesis via TRIM25. Journal of Cellular and Molecular Medicine, 28(3), e18104.
  • Zhu, H. J., Ding, H. H., Deng, J. Y., Pan, H., Wang, L. J., Li, N. S., ... & Gong, F. Y. (2013). Inhibition of preadipocyte differentiation and adipogenesis by zinc‐α2‐glycoprotein treatment in 3T3‐L1 cells. Journal of Diabetes Investigation, 4(3), 252-260.
  • Zhou, X., Deng, C., Chen, L., Lei, L., Wang, X., Zheng, S., ... & Yang, J. (2024). Zinc-alpha2-glycoprotein modulates blood pressure by regulating renal lipid metabolism reprogramming-mediated urinary Na+ excretion in hypertension. Cardiovascular Research, 120(16), 2134-2146.
  • Zimowska, M., Rolbiecka, M., Antoniak-Pietrynczak, K., Jaskulak, M., & Zorena, K. (2024). Dynamics of Serum Inflammatory Markers and Adipokines in Patients: Implications for Monitoring Abnormal Body Weight: Preliminary Research. Metabolites, 14(5), 260.

The effect of paclitaxel on cachexia-related gene AZGP1 expression during adipocyte differentiation

Yıl 2025, Cilt: 6 Sayı: 1, 28 - 34, 30.04.2025
https://doi.org/10.51753/flsrt.1609937

Öz

Cancer cachexia, a syndrome characterized by involuntary weight loss, affects skeletal muscles and leads to adipose tissue loss. Activation of adipose tissue during cancer cachexia may contribute to cachexia through mechanisms like ZAG, a biomarker for adipose atrophy. This study aimed to analyze the effect of paclitaxel on adipogenesis and cachexia-related genes in cancer cachexia. The study involved human preadipocyte cells grown in a commercial medium, with 50 nM paclitaxel applied on different days for differentiation. The 15th day, marking the completion of differentiation was analyzed for lipid accumulation and PPARγ and AZGP1 gene expression. The study found that paclitaxel during adipogenesis suppressed differentiation and lipid accumulation in human preadipocytes. It was determined that there was no change in the expression level of the AZGP1 gene in day 3 preadipocytes given paclitaxel starting from the 3rd day of differentiation. It was determined that PPARγ gene expression was suppressed in day 0 preadipocytes given paclitaxel starting from the first day of differentiation compared to the control group. As a result, it has been determined that paclitaxel may contribute to adipose tissue loss in cancer cachexia by suppressing the differentiation of preadipocytes and lipid accumulation during adipogenesis. The change caused by paclitaxel in the expression of genes such as AZGP1 and PPARγ during adipogenesis needs to be analyzed in further studies.

Kaynakça

  • Bao, Y., Bing, C., Hunter, L., Jenkins, J. R., Wabitsch, M., & Trayhurn, P. (2005). Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes. FEBS letters, 579(1), 41-47.
  • Batista Jr, M. L., Olivan, M., Alcantara, P. S. M., Sandoval, R., Peres, S. B., Neves, R. X., ... & Seelaender, M. (2013). Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine, 61(2), 532-539.
  • Beluzi, M., Peres, S. B., Henriques, F. S., Sertie, R. A., Franco, F. O., Santos, K. B., ... & Batista Jr, M. L. (2015). Pioglitazone treatment increases survival and prevents body weight loss in tumor–bearing animals: possible anti-cachectic effect. PloS one, 10(3), e0122660.
  • Bing, C., Russell, S., Becket, E., Pope, M., Tisdale, M. J., Trayhurn, P., & Jenkins, J. R. (2006). Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. British journal of cancer, 95(8), 1028-1037.
  • Burgi, W., & Schmid, K. (1961). Preparation and properties of Zn-α2-glycoprotein of normal human plasma. Journal of Biological Chemistry, 236(4), 1066-1074.
  • Cabrera, A. R., Parker, K., Snoke, D. B., Hammig, B., & Greene, N. P. (2025). Landscape of Clinical Trials in Cancer Cachexia: Assessment of Trends From 1995-2024. medRxiv, 2025-03.
  • Chang, Y. H., Liu, H. W., Chu, T. Y., Wen, Y. T., Tsai, R. K., & Ding, D. C. (2017). Cisplatin-impaired adipogenic differentiation of adipose mesenchymal stem cells. Cell Transplantation, 26(6), 1077-1087.
  • Choi, J. Y., Kim, Y. J., Shin, J. S., Choi, E. B., Kim, Y., Kim, M. G., ... & Kim, J. G. (2025). Integrative metabolic profiling of hypothalamus and skeletal muscle in a mouse model of cancer cachexia. Biochemical and Biophysical Research Communications, 151766.
  • Choron, R. L., Chang, S., Khan, S., Villalobos, M. A., Zhang, P., Carpenter, J. P., ... & Liu, Y. (2015). Paclitaxel impairs adipose stem cell proliferation and differentiation. Journal of Surgical Research, 196(2), 404-415.
  • Chu, D. T., Malinowska, E., Gawronska-Kozak, B., & Kozak, L. P. (2014). Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. Journal of Biological Chemistry, 289(26), 18478-18488.
  • Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378.
  • Deng, L., Bao, W., Zhang, B., Zhang, S., Chen, Z., Zhu, X., ... & Chen, G. (2023). AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway. Cell Death & Disease, 14(9), 590.
  • Di Sebastiano, K. M., & Mourtzakis, M. (2012). A critical evaluation of body composition modalities used to assess adipose and skeletal muscle tissue in cancer. Applied Physiology, Nutrition, and Metabolism, 37(5), 811-821.
  • Ebadi, M., & Mazurak, V. C. (2014). Evidence and mechanisms of fat depletion in cancer.Nutrients, 6(11), 5280-5297.
  • Elattar, S., Dimri, M., & Satyanarayana, A. (2018). The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. The FASEB Journal, 32(9), 4727.
  • Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., ... & Baracos, V. E. (2011). Definition and classification of cancer cachexia: an international consensus. The lancet oncology, 12(5), 489-495.
  • Huang, T. H., Wu, T. H., Guo, Y. H., Li, T. L., Chan, Y. L., & Wu, C. J. (2019). The concurrent treatment of Scutellaria baicalensis Georgi enhances the therapeutic efficacy of cisplatin but also attenuates chemotherapy-induced cachexia and acute kidney injury. Journal of Ethnopharmacology, 243, 112075.
  • Goncalves, M. D., Hwang, S. K., Pauli, C., Murphy, C. J., Cheng, Z., Hopkins, B. D., ... & Cantley, L. C. (2018). Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proceedings of the National Academy of Sciences, 115(4), E743-E752.
  • Khan, M. S., Butler, J., & Anker, M. (2025). Weight gain among cancer patients receiving chemotherapy—facts and numbers. Journal of Cachexia, Sarcopenia and Muscle, 16(1), e13694.
  • Kim, H. Y., Jang, H. J., Muthamil, S., Shin, U. C., Lyu, J. H., Kim, S. W., Go, Y., Park, S. H., Lee, H. G., & Park, J. H. (2024). Novel insights into regulators and functional modulators of adipogenesis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 177, 117073.
  • Kurtulus, E. M., Karis, D., Ercan, A. M., & Konukoglu, D. (2024). Zinc Alpha-2 Glycoprotein, Acylated Ghrelin, and Zinc Levels in Prediabetics. in vivo, 38(2), 975-981.
  • Langer, H. T., Ramsamooj, S., Dantas, E., Murthy, A., Ahmed, M., Ahmed, T., ... & Goncalves, M. D. (2024). Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Acta Physiologica, e14167.
  • Laviano, A., Seelaender, M., Sanchez-Lara, K., Gioulbasanis, I., Molfino, A., & Fanelli, F. R. (2011). Beyond anorexia-cachexia. Nutrition and modulation of cancer patients' metabolism: supplementary, complementary or alternative anti-neoplastic therapy?. European Journal of Pharmacology, 668, S87-S90.
  • Lopes, M. A., Franco, F. O., Henriques, F., Peres, S. B., & Batista, M. L. (2018). LLC tumor cells-derivated factors reduces adipogenesis in co-culture system. Heliyon, 4(7).
  • Mannelli, M., Gamberi, T., Magherini, F., & Fiaschi, T. (2020). The adipokines in cancer cachexia. International Journal of Molecular Sciences, 21(14), 4860.
  • Martínez-Navarro, I., Vilchis-Gil, J., Cossío-Torres, P. E., Hernández-Mendoza, H., Klünder-Klünder, M., Layseca-Espinosa, E., Galicia-Cruz, O. G., & Rios-Lugo, M. J. (2024). Serum Zinc-Alpha-2 Glycoprotein and Zinc Levels and Their Relationship with Insulin Resistance and Biochemical Parameters in Overweight and Obese Children. Biological trace element research. Advance online publication.
  • Mracek, T., Stephens, N. A., Gao, D., Bao, Y., Ross, J. A., Ryden, M., ... & Bing, C. (2011). Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. British Journal of Cancer, 104(3), 441-447.
  • Mota, I. N. R., Satari, S., Marques, I. S., Santos, J. M. O., & Medeiros, R. (2024). Adipose tissue rearrangement in cancer cachexia: The involvement of β3-adrenergic receptor associated pathways. Biochimica et biophysica acta. Reviews on cancer, 1879(3), 189103.
  • Muliawati, Y., Haroen, H., & Rotty, L. W. (2012). Cancer anorexia-cachexia syndrome. pathogenesis, 5(5), 154-162.
  • Ni, J., & Zhang, L. (2020). Cancer cachexia: definition, staging, and emerging treatments. Cancer Management and Research, 5597-5605.
  • Panagiotou, G., Babazadeh, D., Mazza, D. F., Azghadi, S., Cawood, J. M., Rosenberg, A. S., ... & Chondronikola, M. (2025). Brown adipose tissue is associated with reduced weight loss and risk of cancer cachexia: A retrospective cohort study. Clinical Nutrition, 45, 262-269.
  • Peixoto da Silva, S., Santos, J. M., Costa e Silva, M. P., Gil da Costa, R. M., & Medeiros, R. (2020). Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. Journal of Cachexia, Sarcopenia and Muscle, 11(3), 619-635.
  • Pendás, A. M., Matilla, T., Uría, J. A., Freije, J. P., Fueyo, A., Estivill, X., & López-Otín, C. (1994). Mapping of the human Zn-α2-glycoprotein gene (AZGP1) to chromosome 7q22 by in situ hybridization. Cytogenetic and Genome Research, 66(4), 263-266.
  • Senyigit, A., Durmus, S., Tabak, O., Oruc, A., Uzun, H., & Ekinci, I. (2024). The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. Journal of clinical medicine, 13(20), 6126.
  • Qiu, S., Wu, Q., Wang, H., Liu, D., Chen, C., Zhu, Z., ... & Yang, M. (2024). AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation . Nature Communications, 15(1), 3377. Qin, H., Yuan, Y., Yuan, M., Wang, H., & Yang, Y. (2024). Degradation of AZGP1 suppresses the progression of breast cancer cells via TRIM25. Environmental Toxicology, 39(2), 882-889.
  • Unver, S., Biyik, I., Akman, T., Simsek, E., Kucuk, H., Kaplan, A., ... & Caycı, Y. T. (2024). Effect of acute anaerobic performance on zinc alpha 2 glycoprotein, apelin and lipasin levels. PeerJ, 12, e18093.
  • Wen, R. M., Qiu, Z., Marti, G. E. W., Peterson, E. E., Marques, F. J. G., Bermudez, A., Wei, Y., Nolley, R., Lam, N., Polasko, A. L., Chiu, C. L., Zhang, D., Cho, S., Karageorgos, G. M., McDonough, E., Chadwick, C., Ginty, F., Jung, K. J., Machiraju, R., Mallick, P., … Brooks, J. D. (2024). AZGP1 deficiency promotes angiogenesis in prostate cancer. Journal of translational medicine, 22(1), 383.
  • Xu, M., Jin, X., & Shen, Z. (2024). ZAG promotes colorectal cancer cell proliferation and epithelial–mesenchymal transition by promoting lipid synthesis. Open Life Sciences, 19(1), 20221007.
  • Yeung, D. C., Lam, K. S., Wang, Y., Tso, A. W., & Xu, A. (2009). Serum zinc-α2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. The Journal of Clinical Endocrinology & Metabolism, 94(7), 2531-2536.
  • You, J. S., Lee, Y. J., Kim, K. S., Kim, S. H., & Chang, K. J. (2014). Antiobesity and hypolipidaemic effects of Nelumbo nucifera seed ethanol extract in human pre‐adipocytes and rats fed a high‐fat diet. Journal of the Science of Food and Agriculture, 94(3), 568-575.
  • Yun, H., Jeong, H. R., Kim, D. Y., You, J. E., Lee, J. U., Kang, D. H., ... & Jin, D. H. (2024). Degradation of AZGP1 suppresses apoptosis and facilitates cholangiocarcinoma tumorigenesis via TRIM25. Journal of Cellular and Molecular Medicine, 28(3), e18104.
  • Zhu, H. J., Ding, H. H., Deng, J. Y., Pan, H., Wang, L. J., Li, N. S., ... & Gong, F. Y. (2013). Inhibition of preadipocyte differentiation and adipogenesis by zinc‐α2‐glycoprotein treatment in 3T3‐L1 cells. Journal of Diabetes Investigation, 4(3), 252-260.
  • Zhou, X., Deng, C., Chen, L., Lei, L., Wang, X., Zheng, S., ... & Yang, J. (2024). Zinc-alpha2-glycoprotein modulates blood pressure by regulating renal lipid metabolism reprogramming-mediated urinary Na+ excretion in hypertension. Cardiovascular Research, 120(16), 2134-2146.
  • Zimowska, M., Rolbiecka, M., Antoniak-Pietrynczak, K., Jaskulak, M., & Zorena, K. (2024). Dynamics of Serum Inflammatory Markers and Adipokines in Patients: Implications for Monitoring Abnormal Body Weight: Preliminary Research. Metabolites, 14(5), 260.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücre Gelişimi, Proliferasyon ve Ölümü, Hücre Metabolizması
Bölüm Araştırma Makaleleri
Yazarlar

Özlem Ağirel 0000-0002-2776-919X

Ceyda Okudu 0000-0001-9676-4045

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 30 Aralık 2024
Kabul Tarihi 13 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Ağirel, Ö., & Okudu, C. (2025). The effect of paclitaxel on cachexia-related gene AZGP1 expression during adipocyte differentiation. Frontiers in Life Sciences and Related Technologies, 6(1), 28-34. https://doi.org/10.51753/flsrt.1609937

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.