Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil

Yıl 2025, Cilt: 4 Sayı: 2, 262 - 275, 26.06.2025
https://doi.org/10.62520/fujece.1555398

Öz

Plastic materials are widely used due to their low cost and ease of transportation. As a result, plastic waste is continuously increasing in the environment. Especially, waste plastic materials such as polyethylene, polypropylene, polystyrene, polyethylene terephthalate and nylon used in packaging processes increased during COVID-19 pandemic. Methods such as storage, burning and burying are used to recycle or reuse these waste plastic materials. However, the pyrolysis method is preferred in order to both recycle waste plastic materials and reduce environmental pollution. In this study, bio-oil was obtained by burning waste recycled polypropylene in granular form for 45 minutes at 500˚C in an oxygen-free environment with the pyrolysis method. Bio-oil at 1, 2 and 3% ratios and 50/70 asphalt were homogeneously modified for 30 minutes, at 3000 rpm and 160˚C with the help of temperature-controlled mixer. Vialit, Nicholson and California Stripping tests were carried out to evaluate adhesion of loose asphalt mixtures containing 50/70 asphalt and modified asphalt under influence of water and humidity. According to the results of the vialit test, as ratio of bio-oil, added to 50/70 asphalt increased, modified asphalt showed better bonding performance with aggregates. In Nicholson stripping test, asphalt modified with bio-oil at ratio of 1% showed better resistance to moisture susceptibility, while in California stripping test, asphalt modified with bio-oil at different ratios showed less resistance to temperature and rainwater movement, simulated in laboratory conditions. The experimental results were analyzed using statistical methods

Etik Beyan

There is no conflict of interest with any person/institution in the prepared article”

Kaynakça

  • M. A. Dalhat and H. I. Al-Abdul Wahhab, "Performance of recycled plastic waste modified asphalt binder in Saudi Arabia," Int. J. Pavement Eng., vol. 18, no. 4, pp. 349–357, Sep. 2015.
  • M. S. Qureshi et al., "Pyrolysis of plastic waste: opportunities and challenges," J. Anal. Appl. Pyrolysis, vol. 152, p. 104804, Nov. 2020.
  • S. Dharmaraj et al., "Pyrolysis: an effective technique for degradation of COVID-19 medical wastes," Chemosphere, vol. 275, p. 130092, Jul. 2021.
  • U. Gaur, M. Musaib, and W. Akram, "Waste cooking oil and waste plastic used in bitumen modification," JETIR, vol. 8, no. 7, pp. 83–88, Jul. 2021.
  • G. Wu, J. Li, and Z. Xu, "Triboelectrostatic separation for granular plastic waste recycling: a review," Waste Manag., vol. 33, no. 3, pp. 585–597, Mar. 2013.
  • B. B. Uzoejinwa et al., "Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide," Energy Convers. Manag., vol. 163, pp. 468–492, May 2018.
  • R. Verma et al., "Toxic pollutants from plastic waste – a review," Procedia Environ. Sci., vol. 35, pp. 701–708, 2016.
  • M. T. Rahman, A. Mohajerani, and F. Giustozzi, "Recycling of waste materials for asphalt concrete and bitumen: a review," Materials, vol. 13, no. 7, p. 1495, Mar. 2020.
  • W. U. Eze et al., "Plastics waste management: a review of pyrolysis technology," Clean Technol. Recycl., vol. 1, pp. 50–69, Jul. 2021.
  • M. Tripathi, J. N. Sahu, and P. Ganesan, "Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review," Renew. Sustain. Energy Rev., vol. 55, pp. 467–481, Nov. 2015.
  • F. Abnisa et al., "Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis," Energy Convers. Manag., vol. 76, pp. 1073–1082, Dec. 2013.
  • J. Akhtar and N. S. Amin, "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5101–5109, Sep. 2012.
  • J. Park et al., "Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields," Bioresour. Technol., vol. 155, pp. 63–70, Mar. 2014.
  • M. T. Rahman et al., "Impact of bitumen binder: scope of bio-based binder for construction of flexible pavement," J. Teknol., vol. 70, no. 7, 2014.
  • M. M. A. Aziz et al., "An overview on alternative binders for flexible pavement," Constr. Build. Mater., vol. 84, pp. 315–319, Jun. 2015.
  • S. H. Pangestika et al., "Utilization of plastic waste to improve properties of road material: a review," MESI, vol. 3, no. 3, pp. 119–135, 2023.
  • S. Kavuştu, "Co-pyrolysis of polystyrene and polyolefin plastic wastes," M.S. thesis, Ankara Univ., Inst. of Natural and Applied Sci., Ankara, 2013.
  • S. Haider, I. Hafeez, and R. Ullah, "Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures," Constr. Build. Mater., vol. 235, p. 117496, Feb. 2020.
  • S. Saadeh and P. Katawal, "Performance testing of hot mix asphalt modified with recycled waste plastic," Mineta Transp. Inst. Publ., 2021.
  • P. Singh, A. Tophel, and A. K. Swamy, "Properties of asphalt binder and asphalt concrete containing waste polyethylene," J. Pet. Technol., vol. 35, no. 5, pp. 495–500, 2017.
  • R. Mamat et al., "A review of performance asphalt mixtures using bio-binder as alternative binder," J. Teknol., vol. 77, no. 23, 2015.
  • J. Mills-Beale et al., "Aging influence on rheology properties of petroleum-based asphalt modified with biobinder," J. Mater. Civ. Eng., vol. 26, no. 2, Oct. 2012.
  • N. N. Pratama and H. Saptoadi, "Characteristics of waste plastics pyrolytic oil and its applications as alternative fuel on four cylinder diesel engines," Int. J. Renew. Energy Dev., vol. 3, pp. 13–20, 2014.
  • F. Faisal et al., "Optimisation of process parameters to maximise the oil yield from pyrolysis of mixed waste plastics," Sustainability, vol. 16, no. 7, p. 2619, 2024.
  • S. D. A. Sharuddin et al., "A review on pyrolysis of plastic wastes," Energy Convers. Manag., vol. 115, pp. 308–326, May 2016.
  • P. Das and P. Tiwari, "Valorization of packaging plastic waste by slow pyrolysis," Resour. Conserv. Recycl., vol. 128, pp. 69–77, Jan. 2018.
  • S. Bezergianni et al., "Alternative diesel from waste plastics," Energies, vol. 10, no. 11, p. 1750, 2017.
  • L. M. B. Costa et al., "Incorporation of waste plastic in asphalt binders to improve their performance in the pavement," Int. J. Pavement Res. Technol., vol. 6, no. 4, pp. 457–464, 2013.
  • M. N. Razali et al., "Modification of bitumen using polyacrylic wig waste," AIP Conf. Proc., vol. 1930, no. 1, 2018.
  • W. N. Abdulkhabeer, M. Y. Fattah, and M. M. Hilal, "Characteristics of asphalt binder and mixture modified with waste polypropylene," Eng. Sci. Technol., vol. 39, no. 8, pp. 1224–1230, 2021.
  • S. Moubark, F. Khodary, and A. Othman, "Evaluation of mechanical properties for polypropylene modified asphalt concrete mixtures," Int. J. Sci. Res. Manag., vol. 5, no. 12, pp. 7797–7801, 2017.
  • T. Maqsood et al., "Pyrolysis of plastic species: a review of resources and products," J. Anal. Appl. Pyrolysis, vol. 159, p. 105295, 2021.
  • M. M. Akmaz, "Investigation of Engineering Properties of hot mix asphalt modified with solid product obtained from co-pyrolysis of different waste plastics," Ph.D. dissertation, Konya Tech. Univ., Dept. Civil Eng., Konya, 2020.
  • Y. Bow and L. S. Pujiastuti, "Pyrolysis of polypropylene plastic waste into liquid fuel," IOP Conf. Ser.: Earth Environ. Sci., vol. 347, no. 1, p. 012128, 2019.
  • F. Xu, Y. Zhao, and K. Li, "Using waste plastics as asphalt modifier: a review," Materials, vol. 15, no. 1, p. 110, 2021.
  • G. White and F. Hall, "Laboratory comparison of wet-mixing and dry-mixing of recycled waste plastic for binder and asphalt modification," in Proc. 100th Annu. Meet. Transp. Res. Board, Washington, DC, USA, 2021.
  • S. H. Pangestika et al., "Utilization of plastic waste to improve properties of road material: a review," MESI, vol. 3, no. 3, 2023.
  • S. Shirzard and H. Zouzias, "Enhancing the performance of wood-based bio-asphalt: strategies and innovations," Clean Technol. Environ. Policy, pp. 1–21, 2024.
  • C. Gürer et al., "Effects of construction-related factors on chip seal performance," Constr. Build. Mater., vol. 35, pp. 605–613, 2012.
  • F. Rahman et al., "Aggregate retention in chip seal," Transp. Res. Rec., vol. 2267, pp. 56–64, 2012.
  • M. Shamsaei, A. Carter, and M. Vaillancourt, "Using construction and demolition waste materials to develop chip seals for pavements," Infrastructures, vol. 8, no. 5, p. 95, 2023.
  • S. Haider et al., "A pure case study on moisture sensitivity assessment using tests on both loose and compacted asphalt mixture," Constr. Build. Mater., vol. 239, p. 117817, 2020.
  • C. Görekem and B. Sengoz, "Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime," Constr. Build. Mater., vol. 23, no. 6, pp. 2227–2236, 2009.
  • S. Guo, S. Zhang, and A. Zhang, "Privacy-preserving Kruskal-Wallis test," Comput. Methods Programs Biomed., vol. 112, pp. 135–145, 2013.
  • T. W. Macfarland and J. M. Yates, "Kruskal-Wallis H-test for one-way analysis of variance (ANOVA) by ranks," in Introduction to Nonparametric Statistics for the Biological Sciences Using R, pp. 177–211, 2016.
  • O. Munoz-Caceres et al., "Mechanical performance of sustainable asphalt mixtures manufactured with copper slag and high percentages of reclaimed asphalt pavement," Constr. Build. Mater., vol. 304, p. 124653, 2021.
  • M. Saltan, G. Kaçaroğlu, and Ö. Karadağ, "Hot mixture performances of bituminous binders modified with soybean oil," Adv. Struct. Eng., vol. 9, no. 1, pp. 427–443.
  • Ö. Karadağ, "Examination of materials that can be used in tack coat applied on highways," Ph.D. dissertation, Süleyman Demirel Univ., Dept. Civil Eng., Isparta, 2023.
  • U. Bagampadde, D. Kaddu, and B. M. Kiggundu, "Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene," Int. J. Pavement Res. Technol., vol. 6, no. 3, pp. 217–224, 2013.
  • U. Bagampadde, U. Isacsson, and B. M. Kiggundu, "Classical and contemporary aspects of stripping in bituminous mixes," Road Mater. Pavement Des., vol. 5, no. 1, pp. 7–43, 2003.
  • M. Nazirizad, A. Kavussi, and A. Abdi, "Evaluation of the effects of anti-stripping agents on the performance of asphalt mixtures," Constr. Build. Mater., vol. 84, pp. 348–353, 2015.
  • A. M. Hung, A. Goodwin, and E. H. Fini, "Effects of water exposure on bitumen surface microstructure," Constr. Build. Mater., vol. 135, pp. 682–688, 2017.
  • Y. Liu et al., "Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests," Int. J. Pavement Eng., vol. 15, no. 7, pp. 657–670, 2014.
  • Y. Luo et al., "The deterioration and performance improvement of long-term mechanical properties of warm-mix asphalt mixtures under special environmental conditions," Constr. Build. Mater., vol. 135, pp. 622–631, 2017.
  • L. G. Cucalon et al., "Physicochemical characterization of binder-aggregate adhesion varying with temperature and moisture," J. Transp. Eng. B: Pavements, vol. 143, no. 3, p. 04017007, 2017.

Biyo-yağ ile Modifiyeli Asfaltın Yapışma ve Soyulma Özelliklerinin İncelenmesi

Yıl 2025, Cilt: 4 Sayı: 2, 262 - 275, 26.06.2025
https://doi.org/10.62520/fujece.1555398

Öz

Plastik malzemeler düşük maliyetleri ve kolay taşınabilmeleri nedeniyle yaygın olarak kullanılmaktadır. Bunun sonucunda çevrede plastik atık miktarı sürekli artmaktadır. Özellikle COVID-19 pandemide paketleme işlemlerinde kullanılan polietilen, polipropilen, polistiren, polietilen tereftalat ve naylon gibi atık plastik malzemeler artmıştır. Bu atık plastik malzemeleri geri dönüştürmek veya yeniden kullanımı sağlamak için depolama, yakma ve gömme gibi yöntemler uygulanmaktadır. Fakat hem atık plastik malzemelerin geri dönüşümünü sağlamak hem de çevre kirliliğini azaltmak amacıyla piroliz yöntemi tercih edilmektedir. Bu çalışmada piroliz yöntemiyle granüler halde atık geri dönüştürülmüş polipropilen oksijensiz ortamda, 500˚C sıcaklıkta 45 dakika süresince yakılarak biyo-yağ elde edilmiştir. 50/70 asfalt ile %1, 2 ve 3 oranlarında biyo-yağ sıcaklık kontrollü yüksek devirli karıştırıcı yardımıyla 160˚C sıcaklıkta, 3000 rpm karıştırma hızında 30 dakika süresince homojen şekilde modifiye edilmiştir. 50/70 asfalt ve biyo-yağ ile modifiyeli asfalt kullanılarak hazırlanan gevşek asfalt karışımların su ve nem etkisi altında adezyonunu değerlendirmek için Vialit, Nicholson ve Kaliforniya soyulma testleri gerçekleştirilmiştir. Vialit deneyi sonucuna göre, 50/70 asfalta ilave edilen biyo-yağ miktarı arttıkça modifiyeli asfaltın agregalarla daha iyi bağlanma performansı göstermiştir. Nicholson soyulma testinde %1 biyo-yağ ile modifiyeli asfalt nem hassasiyetine karşı daha iyi direnç gösterirken, Kaliforniya soyulma testinde ise sıcaklık ve laboratuvar ortamında simule edilen yağmur suyu hareketine karşı farklı oranlarda biyo-yağ ile modifiyeli asfalt daha az direnç göstermiştir. Deneysel sonuçlar istatiksel yöntem kullanılarak analiz edilmiştir.

Etik Beyan

Hazırlanan makalede herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır”

Kaynakça

  • M. A. Dalhat and H. I. Al-Abdul Wahhab, "Performance of recycled plastic waste modified asphalt binder in Saudi Arabia," Int. J. Pavement Eng., vol. 18, no. 4, pp. 349–357, Sep. 2015.
  • M. S. Qureshi et al., "Pyrolysis of plastic waste: opportunities and challenges," J. Anal. Appl. Pyrolysis, vol. 152, p. 104804, Nov. 2020.
  • S. Dharmaraj et al., "Pyrolysis: an effective technique for degradation of COVID-19 medical wastes," Chemosphere, vol. 275, p. 130092, Jul. 2021.
  • U. Gaur, M. Musaib, and W. Akram, "Waste cooking oil and waste plastic used in bitumen modification," JETIR, vol. 8, no. 7, pp. 83–88, Jul. 2021.
  • G. Wu, J. Li, and Z. Xu, "Triboelectrostatic separation for granular plastic waste recycling: a review," Waste Manag., vol. 33, no. 3, pp. 585–597, Mar. 2013.
  • B. B. Uzoejinwa et al., "Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide," Energy Convers. Manag., vol. 163, pp. 468–492, May 2018.
  • R. Verma et al., "Toxic pollutants from plastic waste – a review," Procedia Environ. Sci., vol. 35, pp. 701–708, 2016.
  • M. T. Rahman, A. Mohajerani, and F. Giustozzi, "Recycling of waste materials for asphalt concrete and bitumen: a review," Materials, vol. 13, no. 7, p. 1495, Mar. 2020.
  • W. U. Eze et al., "Plastics waste management: a review of pyrolysis technology," Clean Technol. Recycl., vol. 1, pp. 50–69, Jul. 2021.
  • M. Tripathi, J. N. Sahu, and P. Ganesan, "Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review," Renew. Sustain. Energy Rev., vol. 55, pp. 467–481, Nov. 2015.
  • F. Abnisa et al., "Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis," Energy Convers. Manag., vol. 76, pp. 1073–1082, Dec. 2013.
  • J. Akhtar and N. S. Amin, "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5101–5109, Sep. 2012.
  • J. Park et al., "Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields," Bioresour. Technol., vol. 155, pp. 63–70, Mar. 2014.
  • M. T. Rahman et al., "Impact of bitumen binder: scope of bio-based binder for construction of flexible pavement," J. Teknol., vol. 70, no. 7, 2014.
  • M. M. A. Aziz et al., "An overview on alternative binders for flexible pavement," Constr. Build. Mater., vol. 84, pp. 315–319, Jun. 2015.
  • S. H. Pangestika et al., "Utilization of plastic waste to improve properties of road material: a review," MESI, vol. 3, no. 3, pp. 119–135, 2023.
  • S. Kavuştu, "Co-pyrolysis of polystyrene and polyolefin plastic wastes," M.S. thesis, Ankara Univ., Inst. of Natural and Applied Sci., Ankara, 2013.
  • S. Haider, I. Hafeez, and R. Ullah, "Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures," Constr. Build. Mater., vol. 235, p. 117496, Feb. 2020.
  • S. Saadeh and P. Katawal, "Performance testing of hot mix asphalt modified with recycled waste plastic," Mineta Transp. Inst. Publ., 2021.
  • P. Singh, A. Tophel, and A. K. Swamy, "Properties of asphalt binder and asphalt concrete containing waste polyethylene," J. Pet. Technol., vol. 35, no. 5, pp. 495–500, 2017.
  • R. Mamat et al., "A review of performance asphalt mixtures using bio-binder as alternative binder," J. Teknol., vol. 77, no. 23, 2015.
  • J. Mills-Beale et al., "Aging influence on rheology properties of petroleum-based asphalt modified with biobinder," J. Mater. Civ. Eng., vol. 26, no. 2, Oct. 2012.
  • N. N. Pratama and H. Saptoadi, "Characteristics of waste plastics pyrolytic oil and its applications as alternative fuel on four cylinder diesel engines," Int. J. Renew. Energy Dev., vol. 3, pp. 13–20, 2014.
  • F. Faisal et al., "Optimisation of process parameters to maximise the oil yield from pyrolysis of mixed waste plastics," Sustainability, vol. 16, no. 7, p. 2619, 2024.
  • S. D. A. Sharuddin et al., "A review on pyrolysis of plastic wastes," Energy Convers. Manag., vol. 115, pp. 308–326, May 2016.
  • P. Das and P. Tiwari, "Valorization of packaging plastic waste by slow pyrolysis," Resour. Conserv. Recycl., vol. 128, pp. 69–77, Jan. 2018.
  • S. Bezergianni et al., "Alternative diesel from waste plastics," Energies, vol. 10, no. 11, p. 1750, 2017.
  • L. M. B. Costa et al., "Incorporation of waste plastic in asphalt binders to improve their performance in the pavement," Int. J. Pavement Res. Technol., vol. 6, no. 4, pp. 457–464, 2013.
  • M. N. Razali et al., "Modification of bitumen using polyacrylic wig waste," AIP Conf. Proc., vol. 1930, no. 1, 2018.
  • W. N. Abdulkhabeer, M. Y. Fattah, and M. M. Hilal, "Characteristics of asphalt binder and mixture modified with waste polypropylene," Eng. Sci. Technol., vol. 39, no. 8, pp. 1224–1230, 2021.
  • S. Moubark, F. Khodary, and A. Othman, "Evaluation of mechanical properties for polypropylene modified asphalt concrete mixtures," Int. J. Sci. Res. Manag., vol. 5, no. 12, pp. 7797–7801, 2017.
  • T. Maqsood et al., "Pyrolysis of plastic species: a review of resources and products," J. Anal. Appl. Pyrolysis, vol. 159, p. 105295, 2021.
  • M. M. Akmaz, "Investigation of Engineering Properties of hot mix asphalt modified with solid product obtained from co-pyrolysis of different waste plastics," Ph.D. dissertation, Konya Tech. Univ., Dept. Civil Eng., Konya, 2020.
  • Y. Bow and L. S. Pujiastuti, "Pyrolysis of polypropylene plastic waste into liquid fuel," IOP Conf. Ser.: Earth Environ. Sci., vol. 347, no. 1, p. 012128, 2019.
  • F. Xu, Y. Zhao, and K. Li, "Using waste plastics as asphalt modifier: a review," Materials, vol. 15, no. 1, p. 110, 2021.
  • G. White and F. Hall, "Laboratory comparison of wet-mixing and dry-mixing of recycled waste plastic for binder and asphalt modification," in Proc. 100th Annu. Meet. Transp. Res. Board, Washington, DC, USA, 2021.
  • S. H. Pangestika et al., "Utilization of plastic waste to improve properties of road material: a review," MESI, vol. 3, no. 3, 2023.
  • S. Shirzard and H. Zouzias, "Enhancing the performance of wood-based bio-asphalt: strategies and innovations," Clean Technol. Environ. Policy, pp. 1–21, 2024.
  • C. Gürer et al., "Effects of construction-related factors on chip seal performance," Constr. Build. Mater., vol. 35, pp. 605–613, 2012.
  • F. Rahman et al., "Aggregate retention in chip seal," Transp. Res. Rec., vol. 2267, pp. 56–64, 2012.
  • M. Shamsaei, A. Carter, and M. Vaillancourt, "Using construction and demolition waste materials to develop chip seals for pavements," Infrastructures, vol. 8, no. 5, p. 95, 2023.
  • S. Haider et al., "A pure case study on moisture sensitivity assessment using tests on both loose and compacted asphalt mixture," Constr. Build. Mater., vol. 239, p. 117817, 2020.
  • C. Görekem and B. Sengoz, "Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime," Constr. Build. Mater., vol. 23, no. 6, pp. 2227–2236, 2009.
  • S. Guo, S. Zhang, and A. Zhang, "Privacy-preserving Kruskal-Wallis test," Comput. Methods Programs Biomed., vol. 112, pp. 135–145, 2013.
  • T. W. Macfarland and J. M. Yates, "Kruskal-Wallis H-test for one-way analysis of variance (ANOVA) by ranks," in Introduction to Nonparametric Statistics for the Biological Sciences Using R, pp. 177–211, 2016.
  • O. Munoz-Caceres et al., "Mechanical performance of sustainable asphalt mixtures manufactured with copper slag and high percentages of reclaimed asphalt pavement," Constr. Build. Mater., vol. 304, p. 124653, 2021.
  • M. Saltan, G. Kaçaroğlu, and Ö. Karadağ, "Hot mixture performances of bituminous binders modified with soybean oil," Adv. Struct. Eng., vol. 9, no. 1, pp. 427–443.
  • Ö. Karadağ, "Examination of materials that can be used in tack coat applied on highways," Ph.D. dissertation, Süleyman Demirel Univ., Dept. Civil Eng., Isparta, 2023.
  • U. Bagampadde, D. Kaddu, and B. M. Kiggundu, "Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene," Int. J. Pavement Res. Technol., vol. 6, no. 3, pp. 217–224, 2013.
  • U. Bagampadde, U. Isacsson, and B. M. Kiggundu, "Classical and contemporary aspects of stripping in bituminous mixes," Road Mater. Pavement Des., vol. 5, no. 1, pp. 7–43, 2003.
  • M. Nazirizad, A. Kavussi, and A. Abdi, "Evaluation of the effects of anti-stripping agents on the performance of asphalt mixtures," Constr. Build. Mater., vol. 84, pp. 348–353, 2015.
  • A. M. Hung, A. Goodwin, and E. H. Fini, "Effects of water exposure on bitumen surface microstructure," Constr. Build. Mater., vol. 135, pp. 682–688, 2017.
  • Y. Liu et al., "Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests," Int. J. Pavement Eng., vol. 15, no. 7, pp. 657–670, 2014.
  • Y. Luo et al., "The deterioration and performance improvement of long-term mechanical properties of warm-mix asphalt mixtures under special environmental conditions," Constr. Build. Mater., vol. 135, pp. 622–631, 2017.
  • L. G. Cucalon et al., "Physicochemical characterization of binder-aggregate adhesion varying with temperature and moisture," J. Transp. Eng. B: Pavements, vol. 143, no. 3, p. 04017007, 2017.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ulaştırma Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Öznur Karadağ 0000-0003-0755-5626

Mehmet Saltan 0000-0001-6221-4918

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 24 Eylül 2024
Kabul Tarihi 23 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Karadağ, Ö., & Saltan, M. (2025). Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil. Firat University Journal of Experimental and Computational Engineering, 4(2), 262-275. https://doi.org/10.62520/fujece.1555398
AMA Karadağ Ö, Saltan M. Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil. FUJECE. Haziran 2025;4(2):262-275. doi:10.62520/fujece.1555398
Chicago Karadağ, Öznur, ve Mehmet Saltan. “Investigation of Adhesion and Stripping Properties of Asphalt Modified With Bio-Oil”. Firat University Journal of Experimental and Computational Engineering 4, sy. 2 (Haziran 2025): 262-75. https://doi.org/10.62520/fujece.1555398.
EndNote Karadağ Ö, Saltan M (01 Haziran 2025) Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil. Firat University Journal of Experimental and Computational Engineering 4 2 262–275.
IEEE Ö. Karadağ ve M. Saltan, “Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil”, FUJECE, c. 4, sy. 2, ss. 262–275, 2025, doi: 10.62520/fujece.1555398.
ISNAD Karadağ, Öznur - Saltan, Mehmet. “Investigation of Adhesion and Stripping Properties of Asphalt Modified With Bio-Oil”. Firat University Journal of Experimental and Computational Engineering 4/2 (Haziran 2025), 262-275. https://doi.org/10.62520/fujece.1555398.
JAMA Karadağ Ö, Saltan M. Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil. FUJECE. 2025;4:262–275.
MLA Karadağ, Öznur ve Mehmet Saltan. “Investigation of Adhesion and Stripping Properties of Asphalt Modified With Bio-Oil”. Firat University Journal of Experimental and Computational Engineering, c. 4, sy. 2, 2025, ss. 262-75, doi:10.62520/fujece.1555398.
Vancouver Karadağ Ö, Saltan M. Investigation of Adhesion and Stripping Properties of Asphalt Modified with Bio-oil. FUJECE. 2025;4(2):262-75.