Araştırma Makalesi
BibTex RIS Kaynak Göster

İmar Mevzuatına Uygunluk Denetimi için Yapı Bilgi Modellemesi Tabanlı Otomatik Kural Kontrolü Uygulaması: Türkiye Örneği

Yıl 2025, Cilt: 4 Sayı: 2, 424 - 445, 26.06.2025
https://doi.org/10.62520/fujece.1691523

Öz

Türkiye’de inşaat projelerinin tasarım ve onay aşamalarında, yapı bilgi modellemesi (YBM) ile oluşturulan proje verilerinin imar mevzuatına uygunluğunu hızlı, şeffaf ve verimli biçimde denetlemeye olanak tanıyan bir otomatik kural kontrolü uygulaması geliştirilmesi bu çalışmanın temel amacını oluşturmaktadır. Bu kapsamda, mevzuat metinlerinde yer alan kurallar önermeler mantığı esas alınarak yazılım diline uyarlanabilir bir yapıya dönüştürülmüş, karar yapıları oluşturulmuş ve YBM ortamına aktarılacak ayırt edici parametreler tanımlanmıştır. Model verileri, paylaşıma açık olan Endüstri Temel Sınıfları (Industry Foundation Classes, IFC) formatında dışa aktarılmış ve Python diliyle geliştirilen yazılım aracılığıyla dört farklı örnek proje üzerinde test edilerek otomatik denetim raporları elde edilmiştir. Elde edilen bulgular, mevzuat kurallarının mantıksal yapılara dönüştürülerek Endüstri Temel Sınıfları veri yapılarıyla karşılaştırılabileceğini ve böylece yapı projelerinin mevzuata uygunluğunun dijital ortamda denetlenebileceğini göstermektedir. Bu yaklaşım, kamu otoritelerinin tasarım ve onay süreçlerinde daha etkin ve şeffaf bir kontrol mekanizması geliştirmelerine katkı sağlayabilir. Çalışmanın özgün yönü, klasik mantık sisteminde yer alan ve karmaşık mantıksal operatörler içermeyen önermeler mantığının, yönetmeliklerdeki girift kurallara uygulanabilmiş olmasıdır. Ayrıca elde edilen doğru önermeler kümesi, yalnızca kural ihlalini göstermekle kalmayıp, ilgili kuralın kapsamlı bir analizini mümkün kılan tamamlayıcı bilgilerle birlikte sunulmaktadır.

Etik Beyan

Hazırlanan makale için etik kurul izni alınmasına gerek yoktur. Hazırlanan makalede herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır.

Kaynakça

  • E. Bellini and K. Bang, “Digitalization in construction: An overview of trends and challenges,” *J. Constr. Innov.*, vol. 1122, no. 1, pp. 1–10, 2022.
  • D. Bryde, M. Broquetas and J. M. Volm, “The project benefits of Building Information Modelling (BIM),” *Int. J. Project Manag.*, vol. 31, no. 7, pp. 971–980, 2013.
  • EU BIM Task Group, “Handbook selection - Turkish handbook.” [Online]. Available: http://www.eubim.eu/handbook-selection/turkish-handbook. [Accessed: Apr. 30, 2025].
  • B. Becerik-Gerber and S. Rice, “The perceived value of building information modeling in the US building industry,” *J. Inf. Technol. Constr.*, vol. 15, no. 15, pp. 185–201, 2010.
  • P. Smith, “BIM implementation–global strategies,” *Procedia Eng.*, vol. 85, pp. 482–492, 2014.
  • O. Hany and D. Mohammed, “Solutions for effective diffusion of BIM for BIM late adopters: case study of UAE AEC industry,” *Int. J. Constr. Manag.*, vol. 23, no. 9, pp. 1484–1493, 2023.
  • G. Şahinkaya, F. A. Sesli, K. Varol and Ö. F. Uzun, “Investigation of Application of Building Information Modeling for Turkey,” *Bilecik Şeyh Edebali Univ. J. Sci.*, vol. 9, no. 1, pp. 555–563, 2022.
  • H. Aladağ, G. Demirdögen and Z. Işık, “Building information modeling (BIM) use in Turkish construction industry,” *Procedia Eng.*, vol. 161, pp. 174–179, 2016.
  • B. Özorhon, *Yapı Bilgi Modellemesi IBB Anadolu Yakası Raylı Sistem Projeleri*, Istanbul, Turkey: Abaküs Yayınları, 2018.
  • M. Z. Tel, “Legislation and Legal Framework BIM Implementation National Assessment,” M.S. thesis, Inst. of Sci., Istanbul Medipol Univ., Istanbul, Turkey, 2021.
  • N. Yamak, S. Koçak and S. Samut, “The Short and Long-Run Dynamics of The Construction Sector In Turkey,” *J. Econ. Manag. Res.*, vol. 7, no. 1, pp. 96–113, 2018.
  • T. Liebich, J. Wix, J. Forester and Z. Qi, “Speeding-up the Building Plan Approval – the Singapore E-Plan Checking Project Offers Automatic Plan Checking Based on IFC,” in *E-Work and E-Business in Architecture, Engineering and Construction*, Portoroz, Rotterdam: Balkema, pp. 467–471, 2002.
  • T. F. Sing and Q. Zhong, “Construction and Real Estate Network (CoreNet),” *Facilities*, vol. 19, no. 11/12, pp. 419–428, 2001.
  • N. Nisbet, J. Wix and D. Conover, “The Future of Virtual Construction and Regulation Checking,” in *Virtual Futures for Design, Construction & Procurement*, Oxford, UK: Blackwell Publ., pp. 241–250, 2009.
  • Y. Gholami, “Investigating Adoption of Digital Technologies in Construction Projects,” Linköping Univ. Electron. Press, 2023. doi:10.3384/9789180750257
  • AIA American Institute of Architects California Council, “Integrated Project Delivery: A Guide,” 2007. [Online]. Available: https://www.aia.org/sites/default/files/2023-11/ipd_guide.pdf. [Accessed: Apr. 30, 2025].
  • JG China Construction Industry Standard, “JGT198-2007.” [Online]. Available: https://www.chinesestandard.net/PDF/English.amp.aspx/JGT198-2007?Redirect. [Accessed: Apr. 30, 2025].
  • NBlMS, “National Building Information Modeling Standard v3.” [Online]. Available: https://www.nibs.org/nbims/v3. [Accessed: Apr. 30, 2025].
  • T. Akkoyunlu, “A BIM Execution Plan Proposal for Urban Transformation Projects,” Ph.D. dissertation, Inst. of Sci., Istanbul Technical Univ., Istanbul, Turkey, 2015.
  • T. Sarıçiçek, “BIM Implementation Roadmap for Architectural SMEs in Turkey,” M.S. thesis, Inst. of Sci., Hasan Kalyoncu Univ., Gaziantep, Turkey, 2019.
  • M. S. Salim and A. M. R. Mahjoob, “Achieving the Benefits and Requirements of Integrated Project Delivery Method Using BIM,” *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 901, no. 1, pp. 1–12, 2020.
  • C. J. Kibert, *Sustainable Construction: Green Building Design and Delivery*. Hoboken, NJ: John Wiley & Sons. [Online]. Available: https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/9374/Contents.pdf?sequence=5. [Accessed: Apr. 30, 2025].
  • J. Radl and J. Kaiser, “Benefits of Implementation of Common Data Environment (CDE) into Construction Projects,” *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 471, pp. 1–22, 2019.
  • E. Cekin and S. Seyis, “BIM Execution Plan based on BS EN ISO 19650‐1 and BS EN ISO 19650‐2 Standards,” in *Proc. 6th Int. Project and Construction Management Conf.*, pp. 67–74, 2020.
  • Penn State University, “Building Information Modeling (BIM) Project.” [Online]. Available: ttp://bim.psu.edu. [Accessed: Apr. 30, 2025].
  • C. Eastman, P. Teicholz, R. Sacks and K. Liston, *BIM Handbook: A Guide to Building Information Modeling for Owner, Manager, Designer, Engineers and Contractors*. Hoboken, NJ: John Wiley & Sons, 2011.
  • T. Froese, “Future directions for IFC-based interoperability,” *J. Inf. Technol. Constr.*, vol. 8, pp. 231–246, 2003.
  • M. Nour, “Manipulating IFC Sub-Models in Collaborative Teamwork Environments,” in *Proc. 24th CIB W78 Conf. on Inf. Technol. Constr.*, pp. 26–29, 2007.
  • Industry Foundation Classes, “IFC4 Add2 TC1 RV1.2.” [Online]. Available: https://standards.buildingsmart.org/MVD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/. [Accessed: Apr. 30, 2025].
  • buildingSMART, “Four-layer IFC structure.” [Online]. Available: https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/link/introduction.htm. [Accessed: Apr. 30, 2025].
  • S. Macit and H. M. Günaydın, “Building Code Representation: A New Model,” *J. BAUN Inst. Sci. Technol.*, vol. 17, no. 2, pp. 83–102, 2015.
  • S. Macit, “Computer Representation of Building Codes for Automated Compliance Checking,” Ph.D. dissertation, Grad. School of Eng. and Sci., Izmir Inst. of Technol., Izmir, Turkey, 2014.
  • M. M. Hakim and J. H. Garrett, “A description logic approach for representing engineering design standards,” *Eng. with Comput.*, vol. 9, pp. 108–124, 1993.
  • H. Lee, J.-K. Lee, S. Park and I. Kim, “Translating building legislation into a computer-executable format for evaluating building permit requirements,” *Autom. Constr.*, vol. 71, pp. 49–61, 2016.
  • N. Yabuki and K. H. Law, “An Object-Logic Model for the Representation and Processing of Design Standards,” *Eng. with Comput.*, vol. 9, no. 3, pp. 133–159, 1993.
  • L. Ding, R. Drogemuller, M. Rosenman, D. Marchant and J. Gero, “Automating code checking for building designs Design Check,” in *Clients Driving Innovation: Moving Ideas into Practice*, pp. 1–16, 2006.
  • I. Chalkidis, I. Androutsopoulos and N. Aletras, “Neural Legal Judgment Prediction in English,” arXiv preprint, arXiv:1906.02059, 2019.
  • S. Fuchs and R. Amor, “Natural Language Processing for Building Code Interpretation: A Systematic Literature Review,” in *Proc. Conf. CIB W78*, vol. 2021, pp. 11–15, 2021.
  • C. Eastman, J. M. Lee, Y. S. Jeong and J. K. Lee, “Automatic rule-based checking of building designs,” *Autom. Constr.*, vol. 18, no. 8, pp. 1011–1033, 2009.
  • C. Preidel and A. Borrmann, “Automated code compliance checking based on a visual language and building information modeling,” in *Proc. Int. Symp. Autom. Robot. Constr. Min. (ISARC)*, Oulu, Finland, 2015.
  • Türkiye Cumhuriyeti Resmî Gazete, “Planlı Alanlar İmar Yönetmeliği,” no. 30113, Jul. 3, 2017, Ankara.
  • A. Kfoury, “Mathematical Logic in Computer Science,” *arXiv*, [Online]. Available: https://doi.org/10.48550/arXiv.1802.03292. [Accessed: Apr. 30, 2025].
  • buildingSMART, “Technical resources.” [Online]. Available: https://technical.buildingsmart.org/. [Accessed: Apr. 30, 2025].
  • J. Garrett and S. J. Fenves, “A knowledge-based standards processor for structural component design,” *Eng. with Comput.*, vol. 2, pp. 219–238, 1987.
  • C. Lee, K. Yeo and S. Dritsas, “BIM-enabled regulatory design rule checking for building circulation,” in *Proc. CAADRIA 2024*, pp. 211–220, 2024.

A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye

Yıl 2025, Cilt: 4 Sayı: 2, 424 - 445, 26.06.2025
https://doi.org/10.62520/fujece.1691523

Öz

The aim of this study is to develop an automated rule-checking application that enables the rapid, transparent, and efficient verification of building design data, created through Building Information Modeling (BIM), in compliance with zoning regulations during the design and approval phases of construction projects in Turkiye. In this context, rules expressed in regulatory texts were transformed into a format adaptable to software using propositional logic, and decision structures were created. Distinctive parameters based on the rules to be checked were assigned to the BIM environment. Model data were exported in the shareable Industry Foundation Classes (IFC) format, and a Python-based software was developed to test the automated rule-checking method on four different sample projects, generating result reports. The findings show that regulatory provisions can be converted into logical structures and compared with Industry Foundation Classes data, making it possible to digitally assess a project’s compliance with regulations. This approach could contribute to enabling public authorities to implement a more effective and transparent control mechanism in the design and approval processes. The originality of the study lies in the successful application of classical propositional logic—despite its lack of complex logical operators—to complex regulatory rules. Moreover, the set of validated propositions not only defines the outcome of the rule check but also provides comprehensive contextual information related to the rule, allowing for a more in-depth evaluation of the results.

Etik Beyan

There is no need to obtain ethics committee permission for the prepared article. There is no conflict of interest with any person/institution in the prepared article.

Kaynakça

  • E. Bellini and K. Bang, “Digitalization in construction: An overview of trends and challenges,” *J. Constr. Innov.*, vol. 1122, no. 1, pp. 1–10, 2022.
  • D. Bryde, M. Broquetas and J. M. Volm, “The project benefits of Building Information Modelling (BIM),” *Int. J. Project Manag.*, vol. 31, no. 7, pp. 971–980, 2013.
  • EU BIM Task Group, “Handbook selection - Turkish handbook.” [Online]. Available: http://www.eubim.eu/handbook-selection/turkish-handbook. [Accessed: Apr. 30, 2025].
  • B. Becerik-Gerber and S. Rice, “The perceived value of building information modeling in the US building industry,” *J. Inf. Technol. Constr.*, vol. 15, no. 15, pp. 185–201, 2010.
  • P. Smith, “BIM implementation–global strategies,” *Procedia Eng.*, vol. 85, pp. 482–492, 2014.
  • O. Hany and D. Mohammed, “Solutions for effective diffusion of BIM for BIM late adopters: case study of UAE AEC industry,” *Int. J. Constr. Manag.*, vol. 23, no. 9, pp. 1484–1493, 2023.
  • G. Şahinkaya, F. A. Sesli, K. Varol and Ö. F. Uzun, “Investigation of Application of Building Information Modeling for Turkey,” *Bilecik Şeyh Edebali Univ. J. Sci.*, vol. 9, no. 1, pp. 555–563, 2022.
  • H. Aladağ, G. Demirdögen and Z. Işık, “Building information modeling (BIM) use in Turkish construction industry,” *Procedia Eng.*, vol. 161, pp. 174–179, 2016.
  • B. Özorhon, *Yapı Bilgi Modellemesi IBB Anadolu Yakası Raylı Sistem Projeleri*, Istanbul, Turkey: Abaküs Yayınları, 2018.
  • M. Z. Tel, “Legislation and Legal Framework BIM Implementation National Assessment,” M.S. thesis, Inst. of Sci., Istanbul Medipol Univ., Istanbul, Turkey, 2021.
  • N. Yamak, S. Koçak and S. Samut, “The Short and Long-Run Dynamics of The Construction Sector In Turkey,” *J. Econ. Manag. Res.*, vol. 7, no. 1, pp. 96–113, 2018.
  • T. Liebich, J. Wix, J. Forester and Z. Qi, “Speeding-up the Building Plan Approval – the Singapore E-Plan Checking Project Offers Automatic Plan Checking Based on IFC,” in *E-Work and E-Business in Architecture, Engineering and Construction*, Portoroz, Rotterdam: Balkema, pp. 467–471, 2002.
  • T. F. Sing and Q. Zhong, “Construction and Real Estate Network (CoreNet),” *Facilities*, vol. 19, no. 11/12, pp. 419–428, 2001.
  • N. Nisbet, J. Wix and D. Conover, “The Future of Virtual Construction and Regulation Checking,” in *Virtual Futures for Design, Construction & Procurement*, Oxford, UK: Blackwell Publ., pp. 241–250, 2009.
  • Y. Gholami, “Investigating Adoption of Digital Technologies in Construction Projects,” Linköping Univ. Electron. Press, 2023. doi:10.3384/9789180750257
  • AIA American Institute of Architects California Council, “Integrated Project Delivery: A Guide,” 2007. [Online]. Available: https://www.aia.org/sites/default/files/2023-11/ipd_guide.pdf. [Accessed: Apr. 30, 2025].
  • JG China Construction Industry Standard, “JGT198-2007.” [Online]. Available: https://www.chinesestandard.net/PDF/English.amp.aspx/JGT198-2007?Redirect. [Accessed: Apr. 30, 2025].
  • NBlMS, “National Building Information Modeling Standard v3.” [Online]. Available: https://www.nibs.org/nbims/v3. [Accessed: Apr. 30, 2025].
  • T. Akkoyunlu, “A BIM Execution Plan Proposal for Urban Transformation Projects,” Ph.D. dissertation, Inst. of Sci., Istanbul Technical Univ., Istanbul, Turkey, 2015.
  • T. Sarıçiçek, “BIM Implementation Roadmap for Architectural SMEs in Turkey,” M.S. thesis, Inst. of Sci., Hasan Kalyoncu Univ., Gaziantep, Turkey, 2019.
  • M. S. Salim and A. M. R. Mahjoob, “Achieving the Benefits and Requirements of Integrated Project Delivery Method Using BIM,” *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 901, no. 1, pp. 1–12, 2020.
  • C. J. Kibert, *Sustainable Construction: Green Building Design and Delivery*. Hoboken, NJ: John Wiley & Sons. [Online]. Available: https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/9374/Contents.pdf?sequence=5. [Accessed: Apr. 30, 2025].
  • J. Radl and J. Kaiser, “Benefits of Implementation of Common Data Environment (CDE) into Construction Projects,” *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 471, pp. 1–22, 2019.
  • E. Cekin and S. Seyis, “BIM Execution Plan based on BS EN ISO 19650‐1 and BS EN ISO 19650‐2 Standards,” in *Proc. 6th Int. Project and Construction Management Conf.*, pp. 67–74, 2020.
  • Penn State University, “Building Information Modeling (BIM) Project.” [Online]. Available: ttp://bim.psu.edu. [Accessed: Apr. 30, 2025].
  • C. Eastman, P. Teicholz, R. Sacks and K. Liston, *BIM Handbook: A Guide to Building Information Modeling for Owner, Manager, Designer, Engineers and Contractors*. Hoboken, NJ: John Wiley & Sons, 2011.
  • T. Froese, “Future directions for IFC-based interoperability,” *J. Inf. Technol. Constr.*, vol. 8, pp. 231–246, 2003.
  • M. Nour, “Manipulating IFC Sub-Models in Collaborative Teamwork Environments,” in *Proc. 24th CIB W78 Conf. on Inf. Technol. Constr.*, pp. 26–29, 2007.
  • Industry Foundation Classes, “IFC4 Add2 TC1 RV1.2.” [Online]. Available: https://standards.buildingsmart.org/MVD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/. [Accessed: Apr. 30, 2025].
  • buildingSMART, “Four-layer IFC structure.” [Online]. Available: https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/link/introduction.htm. [Accessed: Apr. 30, 2025].
  • S. Macit and H. M. Günaydın, “Building Code Representation: A New Model,” *J. BAUN Inst. Sci. Technol.*, vol. 17, no. 2, pp. 83–102, 2015.
  • S. Macit, “Computer Representation of Building Codes for Automated Compliance Checking,” Ph.D. dissertation, Grad. School of Eng. and Sci., Izmir Inst. of Technol., Izmir, Turkey, 2014.
  • M. M. Hakim and J. H. Garrett, “A description logic approach for representing engineering design standards,” *Eng. with Comput.*, vol. 9, pp. 108–124, 1993.
  • H. Lee, J.-K. Lee, S. Park and I. Kim, “Translating building legislation into a computer-executable format for evaluating building permit requirements,” *Autom. Constr.*, vol. 71, pp. 49–61, 2016.
  • N. Yabuki and K. H. Law, “An Object-Logic Model for the Representation and Processing of Design Standards,” *Eng. with Comput.*, vol. 9, no. 3, pp. 133–159, 1993.
  • L. Ding, R. Drogemuller, M. Rosenman, D. Marchant and J. Gero, “Automating code checking for building designs Design Check,” in *Clients Driving Innovation: Moving Ideas into Practice*, pp. 1–16, 2006.
  • I. Chalkidis, I. Androutsopoulos and N. Aletras, “Neural Legal Judgment Prediction in English,” arXiv preprint, arXiv:1906.02059, 2019.
  • S. Fuchs and R. Amor, “Natural Language Processing for Building Code Interpretation: A Systematic Literature Review,” in *Proc. Conf. CIB W78*, vol. 2021, pp. 11–15, 2021.
  • C. Eastman, J. M. Lee, Y. S. Jeong and J. K. Lee, “Automatic rule-based checking of building designs,” *Autom. Constr.*, vol. 18, no. 8, pp. 1011–1033, 2009.
  • C. Preidel and A. Borrmann, “Automated code compliance checking based on a visual language and building information modeling,” in *Proc. Int. Symp. Autom. Robot. Constr. Min. (ISARC)*, Oulu, Finland, 2015.
  • Türkiye Cumhuriyeti Resmî Gazete, “Planlı Alanlar İmar Yönetmeliği,” no. 30113, Jul. 3, 2017, Ankara.
  • A. Kfoury, “Mathematical Logic in Computer Science,” *arXiv*, [Online]. Available: https://doi.org/10.48550/arXiv.1802.03292. [Accessed: Apr. 30, 2025].
  • buildingSMART, “Technical resources.” [Online]. Available: https://technical.buildingsmart.org/. [Accessed: Apr. 30, 2025].
  • J. Garrett and S. J. Fenves, “A knowledge-based standards processor for structural component design,” *Eng. with Comput.*, vol. 2, pp. 219–238, 1987.
  • C. Lee, K. Yeo and S. Dritsas, “BIM-enabled regulatory design rule checking for building circulation,” in *Proc. CAADRIA 2024*, pp. 211–220, 2024.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Teknolojisi, Yapı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Cengiz Yılmaz 0000-0002-8424-8163

Hüseyin Atilla Dikbaş 0000-0002-1753-5031

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 4 Mayıs 2025
Kabul Tarihi 7 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Yılmaz, C., & Dikbaş, H. A. (2025). A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye. Firat University Journal of Experimental and Computational Engineering, 4(2), 424-445. https://doi.org/10.62520/fujece.1691523
AMA Yılmaz C, Dikbaş HA. A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye. FUJECE. Haziran 2025;4(2):424-445. doi:10.62520/fujece.1691523
Chicago Yılmaz, Cengiz, ve Hüseyin Atilla Dikbaş. “A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye”. Firat University Journal of Experimental and Computational Engineering 4, sy. 2 (Haziran 2025): 424-45. https://doi.org/10.62520/fujece.1691523.
EndNote Yılmaz C, Dikbaş HA (01 Haziran 2025) A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye. Firat University Journal of Experimental and Computational Engineering 4 2 424–445.
IEEE C. Yılmaz ve H. A. Dikbaş, “A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye”, FUJECE, c. 4, sy. 2, ss. 424–445, 2025, doi: 10.62520/fujece.1691523.
ISNAD Yılmaz, Cengiz - Dikbaş, Hüseyin Atilla. “A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye”. Firat University Journal of Experimental and Computational Engineering 4/2 (Haziran 2025), 424-445. https://doi.org/10.62520/fujece.1691523.
JAMA Yılmaz C, Dikbaş HA. A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye. FUJECE. 2025;4:424–445.
MLA Yılmaz, Cengiz ve Hüseyin Atilla Dikbaş. “A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye”. Firat University Journal of Experimental and Computational Engineering, c. 4, sy. 2, 2025, ss. 424-45, doi:10.62520/fujece.1691523.
Vancouver Yılmaz C, Dikbaş HA. A Building Information Modeling Based Automated Rule-Checking Application for Zoning Regulation Compliance: The Case of Turkiye. FUJECE. 2025;4(2):424-45.