Araştırma Makalesi
BibTex RIS Kaynak Göster

Extended Semi-Local Convergence of Newton's Method using the Center Lipschitz Condition and the Restricted Convergence Domain

Yıl 2019, Cilt: 2 Sayı: 1, 5 - 9, 17.06.2019
https://doi.org/10.33401/fujma.503716

Öz

The objective of this study is to extend the usage of Newton's method for Banach space valued operators. We use our new idea of restricted convergence domain in combination with the center Lipschitz hypothesis on the Frechet-derivatives where the center is not necessarily the initial point. This way our semi-local convergence analysis is tighter than in earlier works (since the new majorizing function is at least as tight as the ones used before) leading to weaker criteria, better error bounds more precise information on the solution. These improvements are obtained under the same computational effort.

Kaynakça

  • [1] I. K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, AMS, 28 (2012), 364–387.
  • [2] I. K. Argyros, S. Hilout, On the quadratic convergence of Newton’s method under center-Lipschitz but not necessarily Lipschitz hypotheses, Math. Slovaca, 63 (2013), 621-638.
  • [3] I. K. Argyros, A. A. Magrenan, Iterative Methods and Their Dynamics with Applications, CRC Press, New York, 2017.
  • [4] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Pub., New York, 1992.
  • [5] J. A. Ezquerro, D. Gonzalez, M. A. Hernandez, Majorizing sequences for Newton’s method from initial value problems, J. Comput. Appl. Math., 236 (2012), 2216–2238.
  • [6] J. A. Ezquerro, M. A. Hernandez, Majorizing sequences for nonlinear Fredholdm-Hammerstein integral equations, Stud. Appl. Math., (2017), https://doi.org/10.1111/sapm.12200.
  • [7] J. M. Gutierrez, A. A. Magrenan, N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput., 221 (2013), 79–88.
  • [8] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
  • [9] L. B. Rall, Computational Solution of Nonlinear Operator equations, Robert E. Kreger Publishing Company, Michigan, 1979.
  • [10] T. Yamamoto, Historical developments in convergence analysis for Newton’s and Newton-like methods, J. Comput. Appl. Math., 124 (2000), 1–23.
Yıl 2019, Cilt: 2 Sayı: 1, 5 - 9, 17.06.2019
https://doi.org/10.33401/fujma.503716

Öz

Kaynakça

  • [1] I. K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, AMS, 28 (2012), 364–387.
  • [2] I. K. Argyros, S. Hilout, On the quadratic convergence of Newton’s method under center-Lipschitz but not necessarily Lipschitz hypotheses, Math. Slovaca, 63 (2013), 621-638.
  • [3] I. K. Argyros, A. A. Magrenan, Iterative Methods and Their Dynamics with Applications, CRC Press, New York, 2017.
  • [4] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Pub., New York, 1992.
  • [5] J. A. Ezquerro, D. Gonzalez, M. A. Hernandez, Majorizing sequences for Newton’s method from initial value problems, J. Comput. Appl. Math., 236 (2012), 2216–2238.
  • [6] J. A. Ezquerro, M. A. Hernandez, Majorizing sequences for nonlinear Fredholdm-Hammerstein integral equations, Stud. Appl. Math., (2017), https://doi.org/10.1111/sapm.12200.
  • [7] J. M. Gutierrez, A. A. Magrenan, N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput., 221 (2013), 79–88.
  • [8] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
  • [9] L. B. Rall, Computational Solution of Nonlinear Operator equations, Robert E. Kreger Publishing Company, Michigan, 1979.
  • [10] T. Yamamoto, Historical developments in convergence analysis for Newton’s and Newton-like methods, J. Comput. Appl. Math., 124 (2000), 1–23.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

IIoannis K Argyros 0000-0002-9189-9298

Santhosh George 0000-0002-3530-5539

Yayımlanma Tarihi 17 Haziran 2019
Gönderilme Tarihi 27 Aralık 2018
Kabul Tarihi 4 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Argyros, I. K., & George, S. (2019). Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundamental Journal of Mathematics and Applications, 2(1), 5-9. https://doi.org/10.33401/fujma.503716
AMA Argyros IK, George S. Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundam. J. Math. Appl. Haziran 2019;2(1):5-9. doi:10.33401/fujma.503716
Chicago Argyros, IIoannis K, ve Santhosh George. “Extended Semi-Local Convergence of Newton’s Method Using the Center Lipschitz Condition and the Restricted Convergence Domain”. Fundamental Journal of Mathematics and Applications 2, sy. 1 (Haziran 2019): 5-9. https://doi.org/10.33401/fujma.503716.
EndNote Argyros IK, George S (01 Haziran 2019) Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundamental Journal of Mathematics and Applications 2 1 5–9.
IEEE I. K. Argyros ve S. George, “Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain”, Fundam. J. Math. Appl., c. 2, sy. 1, ss. 5–9, 2019, doi: 10.33401/fujma.503716.
ISNAD Argyros, IIoannis K - George, Santhosh. “Extended Semi-Local Convergence of Newton’s Method Using the Center Lipschitz Condition and the Restricted Convergence Domain”. Fundamental Journal of Mathematics and Applications 2/1 (Haziran 2019), 5-9. https://doi.org/10.33401/fujma.503716.
JAMA Argyros IK, George S. Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundam. J. Math. Appl. 2019;2:5–9.
MLA Argyros, IIoannis K ve Santhosh George. “Extended Semi-Local Convergence of Newton’s Method Using the Center Lipschitz Condition and the Restricted Convergence Domain”. Fundamental Journal of Mathematics and Applications, c. 2, sy. 1, 2019, ss. 5-9, doi:10.33401/fujma.503716.
Vancouver Argyros IK, George S. Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundam. J. Math. Appl. 2019;2(1):5-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a