Derleme
BibTex RIS Kaynak Göster

PRODUCTION OF LIPASED ENZYME MODIFIED CREAM AND ITS USE AS A FLAVOR ADDITIVE

Yıl 2025, Cilt: 50 Sayı: 3, 361 - 373, 10.06.2025
https://doi.org/10.15237/gida.GD25017

Öz

Lipases are the main enzyme group used in the production of enzyme modified dairy products. The product resulting from the hydrolyzation and esterification of milk cream with lipase enzyme is called lipolyzed cream (enzyme modified cream-EMC). EMC is advantageous in many ways due to concentrated cream-butter flavor production, low cost, sustainable industrial applicability and product stability. Aroma formation occurs in traditional dairy products over a long period of time during ripening and storage. At this stage, which can last for months, food safety may not be fully insured as a result of the failure to control microbial activities originating from the natural flora of the food. Disruptions in production and storage capacity are subject to change. Thus, difficulties may arise in producing standard products. Unlike these disadvantages in traditional production, the desired concentrated aroma and taste can be obtained in a short time such as 1-7 days with enzymatic modifications applied under controlled conditions. Studies on EMC are quite limited in literature. This review covers the properties of the lipase enzyme, its areas of use in dairy technology, and studies on EMC produced to develop flavor in some foods.

Kaynakça

  • Alzahrani, F., Akanbi, T.O., Scarlett, C.J., Aryee, A.N.A. (2024). The use of immobilised enzymes for lipid and dairy processing and their waste products: A review of current. Processes, 12(4): 634, doi: 10.3390/pr12040634.
  • Asif, M., Nadeem, M., Imran, M., Ullah, R., Tayyab, M., Khan, F.A., Al-Asmari, F., Rahim, M.A., Rocha, J.M., Korma, S.A., Esatbeyoglu, T. (2023). Effect of fat contents of buttermilk on fatty acid composition, lipolysis, vitamins and sensory properties of cheddar-type cheese. Microbiology, 14:1209509, doi:10.3389/ fmicb.2023.1209509.
  • Bolat, E.B., Erbay, Z. (2022). Enzim modifiye peynir ve üretim teknikleri. Akademik Gıda, 20(1): 94-102, doi:10.24323/akademik-gida.1097869.
  • Borrelli, G.M., Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9): 20774–20840, doi: 10.3390/ijms160920774.
  • Capela, A.P., Lima Tribst, A.A., Duarte Augusto, P.E., Castro Leite Júnior B.R. (2022). Use of physical processes to maximize goat milk cream hydrolysis: Impact on structure and enzymatic hydrolysis. Food Research International, 156: 111343, doi:10.1016/j.foodres.2022.111343.
  • Castro, F.F., Pinheiro, K.H. (2024). Esterases and their biotechnological potential in the food industry: a review. Revista de Ciência de Alimentos e Gastronomia, 1(2): 15-37.
  • Chandra, P., Ranjan Singh, E., Arora, P.K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19: 169-doi: 10.1186/s12934-020-01428-8.
  • Chen, X., Wang, J., Stevenson, R.J., Ang, X., Peng, Y., Quek, S.Y. (2021). Lipase-catalyzed modification of milk fat: A promising way to alter flavour notes of goat milk products. LWT - Food Science and Technology, 145:111286, doi: 10.1016/j.lwt.2021.111286.
  • Erbay, Z., Baş, D., Kendirci, P., Çam, M., Kelebek, H., Salum, P., Selli, S. (2016). Lezzet katkısı olarak peynir ve enzim modifiye peynir tekniğinde güncel durum. Akademik Gıda, 14(2): 209-217.
  • Erbay, Z., Salum, P., Gövce, G. (2017). Türkiye’de üretilen enzim modifiye süt ürünlerinin lipolitik ve proteolitik olgunlaşma düzeylerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(7): 919-925, doi:10.5505/pajes.2016.48830.
  • Fahim, Y.A., El-Khawaga, A.M., Sallam, R.M., Elsayed, M.A., Ali Assar, M.F. (2024). A review on lipases: sources, assays, immobilization techniques on nanomaterials and applications, BioNanoScience,14:1780–1797, doi:10.1007/s12668-024-01319-x.
  • Fatima, S., Faryad, A., Ataa, A., Joyia, F.A., Parvaiz, A. (2020). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3):445-458, doi:10.1002/bab.2019.
  • Fraga, J.L., Penha, A.C.B., Silva, K.A., Amaral, P.F.F. (2020). Synergistic action of Penicillium camemberti and Yarrowia lipolytica lipases in milk fat hydrolysis. Revista Principia - Divulgação Científica e Tecnológica do IFPB, 1(50):47-53, doi: 10.18265/1517-03062015v1n50p47-53.
  • Greicius, A., Baliutavicius, T., Lastauskiene, E., Gudiukaite, R. (2023). Application of milk permeate as an inducer for the production of microbial recombinant lipolytic enzymes. Fermentation, 9(1):27- doi:10.3390/fermentation9010027.
  • Ha, J., Lindsay, R.C. (1993). Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases. Journal of Dairy Science, 76: 677–690.
  • Hossein, J., Kaur, A., Minhas, K.S. (2009). Lipases in dairy industry: A review. Journal of Food Science and Technology, 46(3): 181–189.
  • Huang, Z., Brennan, C.S., Zheng, H., Mohan, M.S., Stipkovits, L.S., Liu, W., Kulasiri, D., Guan, W., Zhao, H., Liu, J. (2020). The effects of fungal lipase-treated milk lipids on bread making. LWT - Food Science and Technology,128:109455, doi:10.1016/j.lwt.2020.109455.
  • Karakus, M.S., Akgul, F.Y., Korkmaz, A., Atasoy, A.F. (2022). Evaluation of fatty acids, free fatty acids and textural properties of butter and sadeyag (anhydrous butter fat) produced from ovine and bovine cream and yoghurt. International Dairy Journal, 126:105229, doi:10.1016/j.idairyj.2021.105229.
  • Kendirci, P., Salum, P., Bas, Deniz., Erbay, Z. (2020). Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: II- effects of lipases. Food and Bioproducts Processing, 122: 230–244.
  • Kıymacı, M.E., Simsek, D., Altanlar, N. (2022).Molecular identification and lipolytic activity of yarrowia lipolytica isolated from yoghurt cream. Journal of Faculty of Pharmacy of Ankara University, 46(2): 450-457, doi: 10.33483/jfpau.1090889.
  • Kilara, A. (2011). Enzymes exogenous to milk in dairy technology: Lipases. In Encyclopedia of Dairy Sciences, J.W. Fuquay, P.F. Fox, P.L.H. McSweeney (ed.), Academic Press, London UK: Elsevier, pp. 728–736.
  • Kilcawley, K. (2006). Enzyme Technology for the Dairy Industry. In Food Biotechnology, K. Shetty, G. Paliyath, A. Pometto, R.E. Levin, (ed.), Chapter 2.20, Boca Raton: Taylor & Francis Group, CRC Press, pp. 1043-1069.
  • Konkit, M., Kim, W. (2016). Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products. Journal of Dairy Science, 99(7): 4999–5007.
  • Kordi, M., Salami, R., Bolouri, P., Delangiz, N., Lajayer, B.A., Hullebusch, E.D.V. (2022). White biotechnology and the production of bio products. Systems Microbiology and Biomanufacturing, 2:413–429, doi: 10.1007/s43393-022-00078-8.
  • Koyuncu, M., Batur, S. (2023). The effects of modified atmosphere packaging on the quality properties of water buffalo milk’s concentrated cream. Molecules, 28(03):1310, doi: 10.3390/molecules28031310.
  • Kumar, A., Dhiman, S., Krishan, B., Samtiya, M., Kumari, A., Pathak, N., Kumari, A., Aluko, R.E., Dhewa, T. (2024). Microbial enzymes and major applications in the food industry: a concise review. Food Production, Processing and Nutrition, 6:85, doi: 10.1186/s43014-024-00261-5.
  • Kurtovic, I., Marshall, S.N., Cleaver, H.L., Miller, M.R. (2016). The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. Food Chemistry, 199:323-329,doi:10.1016/j.foodchem.2015.12.027.
  • Law, B.A. (2010). Enzymes in dairy product manufacture. In: Enzymes in Food Technology, R.J. Whitehurst, M. van Oort (ed.), Second edition, West Sussex, UK: Wiley Blackwell, pp. 88–102.
  • MacGibbon, A. K. H., Taylor, M. W. (2006). Composition and Structure of Bovine Milk Lipids. In: Advanced Dairy Chemistry, Fox P. F., McSweeney, P. L. H (3rd edition), Volume 2: Lipids, Springer, New York, pp. 1-42.
  • Marwa, Y.H., Ali, S.G., Salman, K.H. (2024). Properties of extracellular lipase from isolated bacterial on bovine milk fats. Archives of Agriculture Sciences Journal, 7(2): 90–103.
  • Melani, N.B., Tambourgi, E.B., Silveira, E. (2020). Lipases: From production to applications. Seperaion & Purification Reviews, 49(2): 143-158, doi:10.1080/15422119.2018.1564328.
  • Messaoudi, A., Belguith, H., Gram, I., Hamida, J.B. (2010). Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic analysis. African Journal of Biotechnology, 9(48): 8243-8247, doi: 10.5897/AJB10.721.
  • Mir Khan, U., Selamoglu, Z. (2020). Use of enzymes in dairy industry: A review of current progress. Archives of Razi Institute, 75(1):131-136, doi: 10.22092/ARI.2019.126286.1341.
  • Mohammadi, A., Jafari, S.M., Mahoonak, A.S., Ghorbani, M. (2021). Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. Food and Bioprocess Technology, 14:23–38, doi: 10.1007/s11947-020-02513-x.
  • Moneeb, A.H.M., Hammam, A.R.A., Ahmed, A.K.A., Ahmed, M.E., Alsaleem, K.A. (2021). Effect of fat extraction methods on the fatty acids composition of bovine milk using gas chromatography. Food Science & Nutrition, 9:2936–2942, doi: 10.1002/fsn3.2252.
  • Motoyama, M., Ando, M., Sasaki, K., Hamaguchi, H. (2010). Differentiation of Animal Fats from Different Origins: Use of Polymorphic Features Detected by Raman Spectroscopy. Applied Spectroscopy, 64(11):1244-1250, doi: 10.1366/000370210793335070.
  • Nyyssöola, A., Miettinen, H., Kontkanen, H., Lille, M., Partanen, R., Rokka, S., Jarvenpaa, E., Lantto, R., Kruus, K. (2015). Treatment of milk fat with sn-2 specific Pseudozyma antarctica lipase A for targeted hydrolysis of saturated medium and long-chain fatty acids. International Dairy Journal, 41, 16-22, doi:10.1016/j.idairyj.2014.09.003.
  • Omar, K.A., Gounga, M.E., Liu, R., Mlyuka, E., Wang, X. (2016). Effects of microbial lipases on hydrolyzed milk fat at different time intervals in flavour development and oxidative stability. Journal of Food Science and Technology, 53: 1035–1046, doi:10.1007/s13197-015-2158-8.
  • Özatay, Ş., Kaya, Ç. (2024). Endüstriyel süt ürünleri enzimlerinde güncel yaklaşımlar. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 5(9): 15-24, e-ISSN: 2717-8285.
  • Regado, M.A., Cristovao, B.M., Moutinho, C.G., Balcao, V.M., Aires-Barros, R., Ferreira, J.P.M., Malcata, F.X. (2007). Flavour development via lipolysis of milkfats: changes in free fatty acid pool. International Journal of Food Science and Technology, 42, 961–968, doi:10.1111/j.1365-2621.2006.01317.x.
  • Rivero-Pino, F., Padial-Dominguez, M., Guadix, E.M., Morales-Medina, R. (2020). Novozyme 435 and Lipozyme RM IM preferably esterify polyunsaturated fatty acids at the sn-2 position. European Journal of Lipid Science and Technology,122: 2000115, doi: 10.1002/ejlt.202000115.
  • Saerens, K., Descamps, D., Dewettinck, K. (2008). Release of short chain fatty acids from cream lipids by commercial lipases and esterases. Biotechnology Letters, 30:311–315, doi: 10.1007/s10529-007-9541-0.
  • Santos, M.R,, Hirata, D.B., Angelotti, J.A.F. (2022). Lipases: Sources of acquisition, ways of production, and recent applications. Catalysis Research, 2(2):35, doi:10.21926/cr.2202013.
  • Sert, D. (2022). Peyniraltı suyu ve yayıkaltından elde edilen kremalardan üretilen tereyağların nitelikleri. Ankara Üniversitesi Fen Bilimleri Enstitüsü Süt Teknolojisi Anabilim Dalı, Yüksek Lisans Tezi, Ankara, Türkiye, 96s.
  • Sibeijn, M., Wouters, J.A. (2009). In: Production of Dairy Aromas and Flavors: New Directions. Dairy- Derived Ingredients: Food and Nutraceutical Uses. Corredig M. (ed.), Boca Raton, FL, USA, CRC Press, pp. 470- 481.
  • Soares, A.S., Castro Leite Junior, B.R., Lima Tribst, A.A., Duarte Augusto, P.E., Ramos, A.M. (2020). Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT - Food Science and Technology, 130:109636, doi:10.1016/j.lwt.2020.109636.
  • Sowa, A.M., Kreuter, N., Sella, N., Albuquerque, W., Manhard, J., Siegl, A., Ghezellou, P., Li, B., Spengler, B., Weichhard, E., Rühl, M., Zorn, H., Gand, M. (2022). Replacement of Pregastric Lipases in Cheese Production: Identification and Heterologous Expression of a Lipase from Pleurotus citrinopileatus. Journal of Agricultural and Food Chemistry, 70(9): 2998−3008, doi: 10.1021/acs.jafc.1c07160.
  • Sutay Kocabaş, D. (2021). Gıda endüstrisinde enzimlerin rolü ve ilgili yasal düzenlemeler. Gıda Biyoteknolojisi, Ögel, ZB. (ed.), 1. Baskı, Türkiye Klinikleri, Ankara, Türkiye, s. 29-38.
  • Sutay Kocabaş, D., Lyne, J., Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends in Food Science & Technology, 119: 467–475, doi: 10.1016/j.tifs.2021.12.013.
  • Tamura, H., Ueno, S., Naka, A., Zhao, H., Yonekura, L., Isogai, T., Wakui, R., Shiota M. (2021). Characterisation of aroma profile and evaluation of aroma quality in sweet cream butter. International Dairy Journal, 114, 104935, doi: 10.1016/j.idairyj.2020.104935.
  • Tomasini, A., Bustillo, G., Lebeault, J.M. (1993). Fat lipolyzed with a commercial lipase for the production of blue cheese flavour. International Dairy Journal, 3(2):117-127, doi: 10.1016/0958-6946(93)90011-N.
  • Ulubaş, Ç. (2022). Enzim modifiye tereyağı (Emt) üretiminde üretim işlem koşullarının ve enzim tiplerinin belirlenmesi. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Adana, Türkiye, 96s.
  • Wang, B., Xu, S. (2009). Effects of different commercial lipases on the volatile profile of lipolysed milk fat. Flavour and Fragrance Journal, 24: 335–340, doi: 10.1002/ffj .1945
  • Zhang, W., Wang, B., Ma, C., Pang, X., Lv, J. (2021a). A clarifying reagent and microplate‑based method for the high‑throughput analysis of lipase activity in milk. European Food Research and Technology, 247:2161–2169, doi:10.1007/s00217-021-03702-4.
  • Zhang, X., Chen, L., Ai, N., Sun, B. (2021b). Lipase‑catalyzed enhancement of milk flavor components in the application of modified skim milk products. Journal of Food Measurement and Characterization, 5:4256–4266, doi: 10.1007/s11694-021-01001-w.
  • Zhang, X.M., Ai, N.S., Wang, J., Tong, L.J., Zheng, F.P., Sun, P.G. (2016). Lipase-catalyzed modification of the flavor profiles in recombined skim milk products by enriching the volatile components. Journal of Dairy Science, 99, 8665–8679, doi: 10.3168/jds.2015-10773.
  • Zinjanab, M.S, Golmakani, M.T., Eskandari, M.H., Toh, M., Liu, S.Q. (2021). Natural flavor biosynthesis by lipase in fermented milk using in situ produced ethanol. Journal of Food Science and Technology, 58(5): 1858-1868, doi:10.1007/s13197-020-04697-8.

LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI

Yıl 2025, Cilt: 50 Sayı: 3, 361 - 373, 10.06.2025
https://doi.org/10.15237/gida.GD25017

Öz

Enzim modifiye süt ürünleri üretiminde kullanılan başlıca enzim grubunu lipazlar oluşturmaktadır. Süt kremasının lipaz enzimi ile hidrolizasyonu ve esterifikasyonu sonucu oluşan ürüne lipolize krema (enzim modifiye krema- EMK) denilmektedir. EMK; konsantre krema-tereyağı aroma eldesi, düşük maliyet, sürdürülebilir endüstriyel uygulanabilirlik ve son ürün kararlılığı nedeniyle birçok yönden avantaj sağlamaktadır. Aroma oluşumu geleneksel süt ürünlerinde olgunlaştırma ve depolama sırasında uzun sürede gerçekleşmektedir. Aylarca sürebilen bu aşamada gıdanın doğal florasından kaynaklanan mikrobiyel faaliyetlerin kontrol altına alınamaması sonucu gıda güvenliği tam olarak sağlanamayabilmektedir. Üretim ve depolama kapasitesinde aksamalar olabilmektedir. Böylece standart ürün üretmekte zorluklar yaşanabilmektedir. Geleneksel üretimdeki bu dezavantajların aksine kontrollü koşullarda uygulanan enzimatik modifikasyonlar ile arzu edilen konsantre aroma ve lezzet 1-7 gün gibi kısa sürede, konsantre halde elde edilmektedir. Literatürde EMK ile ilgili çalışmalar oldukça sınırlıdır. Bu derleme lipaz enziminin özelliklerini, süt teknolojisinde kullanım alanlarını ve lezzet katkısı olarak üretilen EMK konusunda yapılan çalışmaları kapsamaktadır.

Kaynakça

  • Alzahrani, F., Akanbi, T.O., Scarlett, C.J., Aryee, A.N.A. (2024). The use of immobilised enzymes for lipid and dairy processing and their waste products: A review of current. Processes, 12(4): 634, doi: 10.3390/pr12040634.
  • Asif, M., Nadeem, M., Imran, M., Ullah, R., Tayyab, M., Khan, F.A., Al-Asmari, F., Rahim, M.A., Rocha, J.M., Korma, S.A., Esatbeyoglu, T. (2023). Effect of fat contents of buttermilk on fatty acid composition, lipolysis, vitamins and sensory properties of cheddar-type cheese. Microbiology, 14:1209509, doi:10.3389/ fmicb.2023.1209509.
  • Bolat, E.B., Erbay, Z. (2022). Enzim modifiye peynir ve üretim teknikleri. Akademik Gıda, 20(1): 94-102, doi:10.24323/akademik-gida.1097869.
  • Borrelli, G.M., Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9): 20774–20840, doi: 10.3390/ijms160920774.
  • Capela, A.P., Lima Tribst, A.A., Duarte Augusto, P.E., Castro Leite Júnior B.R. (2022). Use of physical processes to maximize goat milk cream hydrolysis: Impact on structure and enzymatic hydrolysis. Food Research International, 156: 111343, doi:10.1016/j.foodres.2022.111343.
  • Castro, F.F., Pinheiro, K.H. (2024). Esterases and their biotechnological potential in the food industry: a review. Revista de Ciência de Alimentos e Gastronomia, 1(2): 15-37.
  • Chandra, P., Ranjan Singh, E., Arora, P.K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19: 169-doi: 10.1186/s12934-020-01428-8.
  • Chen, X., Wang, J., Stevenson, R.J., Ang, X., Peng, Y., Quek, S.Y. (2021). Lipase-catalyzed modification of milk fat: A promising way to alter flavour notes of goat milk products. LWT - Food Science and Technology, 145:111286, doi: 10.1016/j.lwt.2021.111286.
  • Erbay, Z., Baş, D., Kendirci, P., Çam, M., Kelebek, H., Salum, P., Selli, S. (2016). Lezzet katkısı olarak peynir ve enzim modifiye peynir tekniğinde güncel durum. Akademik Gıda, 14(2): 209-217.
  • Erbay, Z., Salum, P., Gövce, G. (2017). Türkiye’de üretilen enzim modifiye süt ürünlerinin lipolitik ve proteolitik olgunlaşma düzeylerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(7): 919-925, doi:10.5505/pajes.2016.48830.
  • Fahim, Y.A., El-Khawaga, A.M., Sallam, R.M., Elsayed, M.A., Ali Assar, M.F. (2024). A review on lipases: sources, assays, immobilization techniques on nanomaterials and applications, BioNanoScience,14:1780–1797, doi:10.1007/s12668-024-01319-x.
  • Fatima, S., Faryad, A., Ataa, A., Joyia, F.A., Parvaiz, A. (2020). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3):445-458, doi:10.1002/bab.2019.
  • Fraga, J.L., Penha, A.C.B., Silva, K.A., Amaral, P.F.F. (2020). Synergistic action of Penicillium camemberti and Yarrowia lipolytica lipases in milk fat hydrolysis. Revista Principia - Divulgação Científica e Tecnológica do IFPB, 1(50):47-53, doi: 10.18265/1517-03062015v1n50p47-53.
  • Greicius, A., Baliutavicius, T., Lastauskiene, E., Gudiukaite, R. (2023). Application of milk permeate as an inducer for the production of microbial recombinant lipolytic enzymes. Fermentation, 9(1):27- doi:10.3390/fermentation9010027.
  • Ha, J., Lindsay, R.C. (1993). Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases. Journal of Dairy Science, 76: 677–690.
  • Hossein, J., Kaur, A., Minhas, K.S. (2009). Lipases in dairy industry: A review. Journal of Food Science and Technology, 46(3): 181–189.
  • Huang, Z., Brennan, C.S., Zheng, H., Mohan, M.S., Stipkovits, L.S., Liu, W., Kulasiri, D., Guan, W., Zhao, H., Liu, J. (2020). The effects of fungal lipase-treated milk lipids on bread making. LWT - Food Science and Technology,128:109455, doi:10.1016/j.lwt.2020.109455.
  • Karakus, M.S., Akgul, F.Y., Korkmaz, A., Atasoy, A.F. (2022). Evaluation of fatty acids, free fatty acids and textural properties of butter and sadeyag (anhydrous butter fat) produced from ovine and bovine cream and yoghurt. International Dairy Journal, 126:105229, doi:10.1016/j.idairyj.2021.105229.
  • Kendirci, P., Salum, P., Bas, Deniz., Erbay, Z. (2020). Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: II- effects of lipases. Food and Bioproducts Processing, 122: 230–244.
  • Kıymacı, M.E., Simsek, D., Altanlar, N. (2022).Molecular identification and lipolytic activity of yarrowia lipolytica isolated from yoghurt cream. Journal of Faculty of Pharmacy of Ankara University, 46(2): 450-457, doi: 10.33483/jfpau.1090889.
  • Kilara, A. (2011). Enzymes exogenous to milk in dairy technology: Lipases. In Encyclopedia of Dairy Sciences, J.W. Fuquay, P.F. Fox, P.L.H. McSweeney (ed.), Academic Press, London UK: Elsevier, pp. 728–736.
  • Kilcawley, K. (2006). Enzyme Technology for the Dairy Industry. In Food Biotechnology, K. Shetty, G. Paliyath, A. Pometto, R.E. Levin, (ed.), Chapter 2.20, Boca Raton: Taylor & Francis Group, CRC Press, pp. 1043-1069.
  • Konkit, M., Kim, W. (2016). Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products. Journal of Dairy Science, 99(7): 4999–5007.
  • Kordi, M., Salami, R., Bolouri, P., Delangiz, N., Lajayer, B.A., Hullebusch, E.D.V. (2022). White biotechnology and the production of bio products. Systems Microbiology and Biomanufacturing, 2:413–429, doi: 10.1007/s43393-022-00078-8.
  • Koyuncu, M., Batur, S. (2023). The effects of modified atmosphere packaging on the quality properties of water buffalo milk’s concentrated cream. Molecules, 28(03):1310, doi: 10.3390/molecules28031310.
  • Kumar, A., Dhiman, S., Krishan, B., Samtiya, M., Kumari, A., Pathak, N., Kumari, A., Aluko, R.E., Dhewa, T. (2024). Microbial enzymes and major applications in the food industry: a concise review. Food Production, Processing and Nutrition, 6:85, doi: 10.1186/s43014-024-00261-5.
  • Kurtovic, I., Marshall, S.N., Cleaver, H.L., Miller, M.R. (2016). The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. Food Chemistry, 199:323-329,doi:10.1016/j.foodchem.2015.12.027.
  • Law, B.A. (2010). Enzymes in dairy product manufacture. In: Enzymes in Food Technology, R.J. Whitehurst, M. van Oort (ed.), Second edition, West Sussex, UK: Wiley Blackwell, pp. 88–102.
  • MacGibbon, A. K. H., Taylor, M. W. (2006). Composition and Structure of Bovine Milk Lipids. In: Advanced Dairy Chemistry, Fox P. F., McSweeney, P. L. H (3rd edition), Volume 2: Lipids, Springer, New York, pp. 1-42.
  • Marwa, Y.H., Ali, S.G., Salman, K.H. (2024). Properties of extracellular lipase from isolated bacterial on bovine milk fats. Archives of Agriculture Sciences Journal, 7(2): 90–103.
  • Melani, N.B., Tambourgi, E.B., Silveira, E. (2020). Lipases: From production to applications. Seperaion & Purification Reviews, 49(2): 143-158, doi:10.1080/15422119.2018.1564328.
  • Messaoudi, A., Belguith, H., Gram, I., Hamida, J.B. (2010). Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic analysis. African Journal of Biotechnology, 9(48): 8243-8247, doi: 10.5897/AJB10.721.
  • Mir Khan, U., Selamoglu, Z. (2020). Use of enzymes in dairy industry: A review of current progress. Archives of Razi Institute, 75(1):131-136, doi: 10.22092/ARI.2019.126286.1341.
  • Mohammadi, A., Jafari, S.M., Mahoonak, A.S., Ghorbani, M. (2021). Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. Food and Bioprocess Technology, 14:23–38, doi: 10.1007/s11947-020-02513-x.
  • Moneeb, A.H.M., Hammam, A.R.A., Ahmed, A.K.A., Ahmed, M.E., Alsaleem, K.A. (2021). Effect of fat extraction methods on the fatty acids composition of bovine milk using gas chromatography. Food Science & Nutrition, 9:2936–2942, doi: 10.1002/fsn3.2252.
  • Motoyama, M., Ando, M., Sasaki, K., Hamaguchi, H. (2010). Differentiation of Animal Fats from Different Origins: Use of Polymorphic Features Detected by Raman Spectroscopy. Applied Spectroscopy, 64(11):1244-1250, doi: 10.1366/000370210793335070.
  • Nyyssöola, A., Miettinen, H., Kontkanen, H., Lille, M., Partanen, R., Rokka, S., Jarvenpaa, E., Lantto, R., Kruus, K. (2015). Treatment of milk fat with sn-2 specific Pseudozyma antarctica lipase A for targeted hydrolysis of saturated medium and long-chain fatty acids. International Dairy Journal, 41, 16-22, doi:10.1016/j.idairyj.2014.09.003.
  • Omar, K.A., Gounga, M.E., Liu, R., Mlyuka, E., Wang, X. (2016). Effects of microbial lipases on hydrolyzed milk fat at different time intervals in flavour development and oxidative stability. Journal of Food Science and Technology, 53: 1035–1046, doi:10.1007/s13197-015-2158-8.
  • Özatay, Ş., Kaya, Ç. (2024). Endüstriyel süt ürünleri enzimlerinde güncel yaklaşımlar. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 5(9): 15-24, e-ISSN: 2717-8285.
  • Regado, M.A., Cristovao, B.M., Moutinho, C.G., Balcao, V.M., Aires-Barros, R., Ferreira, J.P.M., Malcata, F.X. (2007). Flavour development via lipolysis of milkfats: changes in free fatty acid pool. International Journal of Food Science and Technology, 42, 961–968, doi:10.1111/j.1365-2621.2006.01317.x.
  • Rivero-Pino, F., Padial-Dominguez, M., Guadix, E.M., Morales-Medina, R. (2020). Novozyme 435 and Lipozyme RM IM preferably esterify polyunsaturated fatty acids at the sn-2 position. European Journal of Lipid Science and Technology,122: 2000115, doi: 10.1002/ejlt.202000115.
  • Saerens, K., Descamps, D., Dewettinck, K. (2008). Release of short chain fatty acids from cream lipids by commercial lipases and esterases. Biotechnology Letters, 30:311–315, doi: 10.1007/s10529-007-9541-0.
  • Santos, M.R,, Hirata, D.B., Angelotti, J.A.F. (2022). Lipases: Sources of acquisition, ways of production, and recent applications. Catalysis Research, 2(2):35, doi:10.21926/cr.2202013.
  • Sert, D. (2022). Peyniraltı suyu ve yayıkaltından elde edilen kremalardan üretilen tereyağların nitelikleri. Ankara Üniversitesi Fen Bilimleri Enstitüsü Süt Teknolojisi Anabilim Dalı, Yüksek Lisans Tezi, Ankara, Türkiye, 96s.
  • Sibeijn, M., Wouters, J.A. (2009). In: Production of Dairy Aromas and Flavors: New Directions. Dairy- Derived Ingredients: Food and Nutraceutical Uses. Corredig M. (ed.), Boca Raton, FL, USA, CRC Press, pp. 470- 481.
  • Soares, A.S., Castro Leite Junior, B.R., Lima Tribst, A.A., Duarte Augusto, P.E., Ramos, A.M. (2020). Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT - Food Science and Technology, 130:109636, doi:10.1016/j.lwt.2020.109636.
  • Sowa, A.M., Kreuter, N., Sella, N., Albuquerque, W., Manhard, J., Siegl, A., Ghezellou, P., Li, B., Spengler, B., Weichhard, E., Rühl, M., Zorn, H., Gand, M. (2022). Replacement of Pregastric Lipases in Cheese Production: Identification and Heterologous Expression of a Lipase from Pleurotus citrinopileatus. Journal of Agricultural and Food Chemistry, 70(9): 2998−3008, doi: 10.1021/acs.jafc.1c07160.
  • Sutay Kocabaş, D. (2021). Gıda endüstrisinde enzimlerin rolü ve ilgili yasal düzenlemeler. Gıda Biyoteknolojisi, Ögel, ZB. (ed.), 1. Baskı, Türkiye Klinikleri, Ankara, Türkiye, s. 29-38.
  • Sutay Kocabaş, D., Lyne, J., Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends in Food Science & Technology, 119: 467–475, doi: 10.1016/j.tifs.2021.12.013.
  • Tamura, H., Ueno, S., Naka, A., Zhao, H., Yonekura, L., Isogai, T., Wakui, R., Shiota M. (2021). Characterisation of aroma profile and evaluation of aroma quality in sweet cream butter. International Dairy Journal, 114, 104935, doi: 10.1016/j.idairyj.2020.104935.
  • Tomasini, A., Bustillo, G., Lebeault, J.M. (1993). Fat lipolyzed with a commercial lipase for the production of blue cheese flavour. International Dairy Journal, 3(2):117-127, doi: 10.1016/0958-6946(93)90011-N.
  • Ulubaş, Ç. (2022). Enzim modifiye tereyağı (Emt) üretiminde üretim işlem koşullarının ve enzim tiplerinin belirlenmesi. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Adana, Türkiye, 96s.
  • Wang, B., Xu, S. (2009). Effects of different commercial lipases on the volatile profile of lipolysed milk fat. Flavour and Fragrance Journal, 24: 335–340, doi: 10.1002/ffj .1945
  • Zhang, W., Wang, B., Ma, C., Pang, X., Lv, J. (2021a). A clarifying reagent and microplate‑based method for the high‑throughput analysis of lipase activity in milk. European Food Research and Technology, 247:2161–2169, doi:10.1007/s00217-021-03702-4.
  • Zhang, X., Chen, L., Ai, N., Sun, B. (2021b). Lipase‑catalyzed enhancement of milk flavor components in the application of modified skim milk products. Journal of Food Measurement and Characterization, 5:4256–4266, doi: 10.1007/s11694-021-01001-w.
  • Zhang, X.M., Ai, N.S., Wang, J., Tong, L.J., Zheng, F.P., Sun, P.G. (2016). Lipase-catalyzed modification of the flavor profiles in recombined skim milk products by enriching the volatile components. Journal of Dairy Science, 99, 8665–8679, doi: 10.3168/jds.2015-10773.
  • Zinjanab, M.S, Golmakani, M.T., Eskandari, M.H., Toh, M., Liu, S.Q. (2021). Natural flavor biosynthesis by lipase in fermented milk using in situ produced ethanol. Journal of Food Science and Technology, 58(5): 1858-1868, doi:10.1007/s13197-020-04697-8.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Süt Teknolojisi
Bölüm Makaleler
Yazarlar

Ezgi Yıkıcı 0000-0002-7274-5584

Yonca Yuceer 0000-0002-9028-2923

Yayımlanma Tarihi 10 Haziran 2025
Gönderilme Tarihi 14 Ocak 2025
Kabul Tarihi 14 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 3

Kaynak Göster

APA Yıkıcı, E., & Yuceer, Y. (2025). LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI. Gıda, 50(3), 361-373. https://doi.org/10.15237/gida.GD25017
AMA Yıkıcı E, Yuceer Y. LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI. GIDA. Haziran 2025;50(3):361-373. doi:10.15237/gida.GD25017
Chicago Yıkıcı, Ezgi, ve Yonca Yuceer. “LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI”. Gıda 50, sy. 3 (Haziran 2025): 361-73. https://doi.org/10.15237/gida.GD25017.
EndNote Yıkıcı E, Yuceer Y (01 Haziran 2025) LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI. Gıda 50 3 361–373.
IEEE E. Yıkıcı ve Y. Yuceer, “LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI”, GIDA, c. 50, sy. 3, ss. 361–373, 2025, doi: 10.15237/gida.GD25017.
ISNAD Yıkıcı, Ezgi - Yuceer, Yonca. “LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI”. Gıda 50/3 (Haziran 2025), 361-373. https://doi.org/10.15237/gida.GD25017.
JAMA Yıkıcı E, Yuceer Y. LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI. GIDA. 2025;50:361–373.
MLA Yıkıcı, Ezgi ve Yonca Yuceer. “LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI”. Gıda, c. 50, sy. 3, 2025, ss. 361-73, doi:10.15237/gida.GD25017.
Vancouver Yıkıcı E, Yuceer Y. LİPAZ KATALİZLİ ENZİM MODİFİYE KREMA ÜRETİMİ VE LEZZET KATKISI OLARAK KULLANIMI. GIDA. 2025;50(3):361-73.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/