Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of kinetics, energy consumption, and GHG analysis of Santa Maria variety pear chips processed by microwave and hot air-assisted microwave drying systems

Yıl 2025, Cilt: 42 Sayı: 1, 80 - 88, 30.04.2025
https://doi.org/10.55507/gopzfd.1649321

Öz

This study, evaluated the effects of microwave-MD and hybrid-MACD (hot air + microwave) drying systems on drying rate (DR), moisture content (MR), effective moisture diffusion (Deff), specific moisture absorption rate (SMER), specific energy consumption (SEC), and greenhouse gas emission (GHG) properties in the production process of ‘Santa Maria’ variety pear fruit chips. Microwave method (except 360 W) dried the products in a shorter time than the hybrid method. The DR values of the MD method were higher than MACD. The Deff values of the drying processes varied between 2.54 × 10-9 and 1.01 × 10-8. The average SMER values for the MD method varied between 0.006917 - 0.002803 kg/kWh and the SEC values varied between 356.8205 - 144.5714 kWh/kg. For MACD method, the average SMER values varied between 0.0037 - 0.0016 kg/kWh and SEC values between 6261.5 - 2693.6 kWh/kg. The increase in energy consumption increased the GHG values. The lowest GHG values were determined in the drying process performed at MD - 720 W power value.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Aghbashlo, M., Kianmehr, M.H., & Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865-2871. https://doi.org/10.1016/j.enconman.2008.03.009.
  • Afzal, T. M., Abe, T., & Hikida, Y. (1999). Energy and quality aspects during combined FIR-convection drying of barley. Journal of Food Engineering, 42, 177-182. https://doi.org/10.1016/S0260-8774(99)00117-X.
  • Aktaş, M., Şevik, S., Amini, A., & Khanlari, A. (2016). Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137: 500-515. https://doi.org/10.1016/j.solener.2016.08.036.
  • Alibas, I., Yılmaz, A., Günaydın, S., & Arkain, B. (2021). Kurutma yöntemlerinin deveci armudunun kurutma kinetiği ve renk parametreleri üzerine etkisi. Turkish Journal of Agriculture-Food Science and Technology, 9(5), 897-908.
  • Antonio, G. C., Alves, D. G., Azoubel, P. M., Murr, F. E. X., & Park, K. J. (2008). Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (Ipomoea batatas Lam.). Journal of Food Engineering, 84, 375-382. https://doi.org/10.1016/j.jfoodeng.2007.05.033.
  • Asokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2015). Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of Food Process Engineering, 39(6): 692-701. https://doi.org/10.1111/jfpe.12261.
  • Bonazzi, C., & Dumoulin, E. (2011). Quality changes in food materials as ınfluenced by drying processes. https://doi.org/10.1002/9783527631667.ch1.
  • Calín-Sánchez, A., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs, Foods 9(9): 1–27. https://doi.org/10.3390/foods9091261, 32916839.
  • Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Moustakas, K., Ludwig, W., & Kułażyński, M. (2021). Improvements in drying technologies - Efficient solutions for cleaner production with higher energy efficiency and reduced emission, Journal of Cleaner Production, 320: 128706. https://doi.org/10.1016/j.jclepro.2021.128706.
  • Coşkun-Topuz, F., Bakkalbaşı, E., Aldemir, A., & Javidipour, I. (2022). Drying kinetics and quality properties of Mellaki (Pyrus communis L.) pear slices dried in a novel vacuum-combined infrared oven. Journal of Food Processing and Preservation, 46(10). https://doi.org/10.1111/jfpp.16866.
  • Çeşmeli, M. Ş., & Pençe, İ. (2020). Makine Öğrenimi Yöntemleri ile Türkiye için Sera Gazı Emisyonu Tahmini. Academic Platform-Journal of Engineering and Science, 8(2), 332-348.
  • Dias, P. G. I., Sajiwanie, J. W. A., & Rathnayaka, R. M. U. S. K. (2020). Chemical composition, physicochemical and technological properties of selected fruit peels as a potential food source. International Journal of Fruit Science, 20(2): 240-251. https://doi.org/10.1080/15538362.2020.1717402.
  • Doymaz, İ., & Aktaş, C. (2018). Determination of drying and rehydration characteristics of eggplant slices. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3).
  • Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979-985.
  • FAO (2011). Energy-smart food for people and climate. 2/3/2017.
  • Fumagalli, F., & Silveria, A. M. (2007). Quality evaluation of microwave-dried Packham's Triumph pear. Drying Technology, 23(9-11), 2215-2226. https://doi.org/10.1080/07373930500212701.
  • Guan, L., Xu, H., Jiang, M., Su, D., Guo, Y., Chen, X., Wang, D., & Song, H. (2024). Effects of penetrating microwave hot-air rolling blanching pretreatment for the drying of hawthorn slices: Evaluation of enzyme activity, drying characteristics, moisture migration, microstructure, and quality attributes. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-024-03525-7.
  • Haryanto, B., Hasibuan, R., Lubis, A. H., Wangi, Y., Khosman, H., & Sinaga A. W. (2020). Drying rate of turmeric herbal (Curcuma longa L.) using tray dryer. Journal of Physics: Conference Series, https://doi.org/10.1088/1742-6596/1542/1/012056.
  • Hexa Research (2018). Global fruit powder market size and forecast, by product (speciality fruits, conventional fruits), by application (food & beverages, pharmaceutical, nutraceutical, others), and trend analysis, 2015 - 2025. In Market Research Report - Food & Beverages, (pp. 59).
  • Juhaimi, F. A., Uslu, N., Özcan, M. M., & Babiker, E. F. E. (2016). Effect of drying on antioxidant activity, total phenol and mineral contents of pear fruits. Journal of Food Safety and Food Quality, 67(2016): 113-148. https://doi.org/10.2376/0003-925X-67-164.
  • Junqueira, J., Corrêa, J., & Ernesto D. (2017). Microwave, convective, and intermittent microwave-convective drying of pulsed vacuum osmodehydrated pumpkin slices. Journal of Food Processing and Preservation, 41(6): e13250. https://doi.org/10.1111/jfpp.13250.
  • Kaveh, M., Abbaspour-Gilandeh, Y., & Nowacka, M. (2021). Comparison of different drying techniques and their carbon emissions in green peas. Chemical Engineering and Processing-Process Intensification, 160, 108274.
  • Kaveh, M., Çetin, N., Gilandeh, Y. A., Sharifian, F., & Szymanek, M. (2023). Comparative evaluation of greenhouse gas emissions and specific energy consumption of different drying techniques in pear slices. European Food Research and Technology, 249(12), 3027-3041.
  • Khachik, F., Beecher, G. R., Goli, M. B., & Lusby, W. R. (1991). Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure Appl. Chem. 63, 71–80.
  • Khampakool, A., Soisungwan, S., & Park, S. H. (2019). Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT, 99, 355-363. https://doi.org/10.1016/j.lwt.2018.09.081.
  • Kiliç, E. E. (2014). Konvektif koşullarda kurutulan sebze ve meyvelerin kuruma karakteristiklerinin belirlenmesi (Master's thesis, Fen Bilimleri Enstitüsü).
  • Kutlu, N., İșci, A., & Demirkol, Ö. Ș. (2015). Thin layer drying models in food systems. GIDA Jornal of Food 40(1): 39-46. https://doi.org/10.15237/gida.GD14031.
  • Laur, L. M., & Tian, L. (2011). Provitamin A and vitamin C contents in selected California-grown cantaloupe and honeydew melons and imported melons. J. Food Compost. Anal. 24, 194–201.
  • Li, T. S., Sulaiman, R., Rukayadi, Y., & Ramli, S. (2021). Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids, 116. https://doi.org/10.1016/j.foodhyd.2020.106492.
  • Li, J., Li, Z., Li, L., Song, C., Raghavan, G. S. V., & He, F. (2021). Microwave drying of balsam pear with online aroma detection and control. Journal of Food Engineering, 288: 110139. https://doi.org/10.1016/j.jfoodeng.2020.110139.
  • Li, B., Fan, X., Yu, S., Xia, H., Nong, Y., Bian, J., Sun, M., & Zi, W. (2023). Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study. Energy, 274. https://doi.org/10.1016/j.energy.2023.127347.
  • Majid, I., & Nanda, V. (2017). Effect of sprouting on the physical properties, morphology and flowability of onion powder. Journal of Food Measurement and Characterization, 11(4), 2033–2042. https://doi.org/10.1007/s11694-017-9586-2.
  • Marzec, A., Kowalska, H., Kowalska, J., Domian, E., & Lenart, A. (2020). Influence of pear variety and drying methods on the quality of dried fruit. Molecules, 25(21): 5146. https://doi.org/10.3390/molecules25215146.
  • Moradi, M., Azizi, S., Niakousari, M., Kamgar, S., & Khaneghah, A. M. (2020). Drying of green bell pepper slices using an IR-assisted Spouted Bed Dryer: An assessment of drying kinetics and energy consumption. Innovative Food Science & Emerging Technologies, 60. https://doi.org/10.1016/j.ifset.2019.102280.
  • Morais, R. M. S. C., Morais, A. M. M. B., Dammak, I., Bonilla, J., Sobral, P. J. A., Laguerre, J. C., Afonso, M. J., & Ramalhosa, E. C. D. (2018). Functional Dehydrated Foods for Health Preservation. Journal of Food Quality, https://doi.org/10.1155/2018/1739636.
  • Moses, J. A., & Authority, F. D. (2014). Novel drying techniques for the food industry, Food Engineering Reviews. (2014) 6, no. 3, 43–55, https://doi.org/10.1007/s12393-014-9078-7, 2-s2.0-84905190068.
  • Motevali, A., & Kloor, R.T. (2017). A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. Journal of Cleaner Production, 154, 445-461.
  • Mouhoubi, K., Boulekbache-Makhlouf, L., Mehaba, W., Himed-Idir, H., & Madani, K. (2021). Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. Journal of Food Process Engineering, https://doi.org/10.1111/jfpe.13932.
  • Nguyen, T. A., Verboven, P., Scheerlinck, N., Vandewalle, S., & Nicolaï, B. M. (2006). Estimation of effective diffusivity of pear tissue and cuticle by means of a numerical water diffusion model. Journal of Food Engineering, 72(1), 63-72.
  • Nizamloğlu, N. M. (2022). Farklı sıcaklık ve mikrodalga güçlerinde kurutulan elma dilimlerinin kurutma özellikleri. Akademik Gıda, 20(3), 253-262. https://doi.org/10.24323/akademik-gida.1186984.
  • Onwuzuruike, U. A., Iguh, B., Uzochukwu, U. C., & Ezuma, V. (2022). Effect of different drying method on the quality characteristics of african pear (Dacroydes edulis) mesocarp flour. Nigeria Agricultural Journal, 53(1), 91-102.
  • Önal, B., Adiletta, G., Matteo, M. D., Russo, P., Ramos, I. N., & Silva, C. L. M. (2021). Microwave and ultrasound pre-treatments for drying of the “rocha” pear: ımpact on phytochemical parameters, color changes and drying kinetics. Foods, 10(4), 53. https://doi.org/10.3390/foods10040853.
  • Özbek, H. N. (2021). Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. LWT, 152, https://doi.org/10.1016/j.lwt.2021.112332.
  • Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2014). Foam-mat drying of cantaloupe (Cucumis melo): optimization of foaming parameters and ınvestigating drying characteristics. Journal of Food Processing and Preservation, 39(6), 1798-1808.
  • Shen, L., Zhu, Y., Liu, C., Wang, L., Liu, H., Kamruzzaman, M., Liu, C., Zhang, Y., & Zheng, X. (2020). Modelling of moving drying process and analysis of drying characteristics for germinated brown rice under continuous microwave drying. Biosystems Engineering, 195, 64-88. https://doi.org/10.1016/j.biosystemseng.2020.05.002.
  • Silva, V., Costa, J. J, Figueiredo, A. R., Nunes, J., Nunes, C., Ribeiro, T.I., & Pereira, B. (2016). Büzülme ve değişken difüzyon katsayısı dikkate alınarak armutların üç aşamalı aralıklı kurutulması üzerine çalışma. Gıda Mühendisliği Dergisi , 180 , 77-86.
  • Sutar, P. P., & Prasad, S. (2008). Microwave Drying Technology-Recent Developments and R&D Needs in India. In proceedings of 42nd ISAE Annual Convention, during February 1-3.
  • Tepe, T. K., & Tepe, F. B. (2024). Improvement of pear slices drying by pretreatments and microwave-assisted convective drying method: drying characteristics, modeling of artificial neural network, principal component analysis of quality parameters. Journal of Thermal Analysis and Calorimetry, 149, 7313-7328. https://doi.org/10.1007/s10973-024-13280-8.
  • Tunçkal, C., Ozkan-Karabacak, A., Tamer, C. E., Yolcı-Omeroglu, P., & Goksel, Z. (2022). Mathematical modelling and optimization of melon slice drying with response surface methodology in a heat pump drying system. Latin American Applied Research, 52(2), 101-110.
  • Turkiewicz, I. P., Wojdylo, A., Tkacz, K., Lech, K., Michalska-Ciechanowska, A., & Nowicka, P. (2020). The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 323, https://doi.org/10.1016/j.foodchem.2020.126830.
  • Wu, X. F., Zhang, M., & Bhandaria, B. (2019). A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innovative Food Science & Emerging Technologies, 54, 34-42. https://doi.org/10.1016/j.ifset.2019.03.003.
  • Yano, M., Kato, M., Ikoma, Y., Kawasaki, A., Fukazawa, Y., Sugiura, M., Matsumoto, H., Oohara, Y., Nagao, A., & Ogawa, K. (2005). Quantitation of carotenoids in raw and processed fruits in Japan. Food Sci. Technol. Res. 11, 13-18.
  • Zhang, H., Zheng, W., Yan, L., Liu, W., Yao, F., Liu, C., & Zheng, L. (2023). Effects of vacuum microwave combined with freeze-drying on the physicochemical properties, phenolic compounds, and antioxidant capacity of pear fruit slices. Journal of Food Science, 88(7): 2807-2820. https://doi.org/10.1111/1750-3841.16653.
  • Zia, S., Khan, M. R., & Aadil, R. M. (2023). Kinetic modeling of different drying techniques and their influence on color, bioactive compounds, antioxidant indices and phenolic profile of watermelon rind. Journal of Food Measurement and Characterization, 17, 1068–1081.
  • Zielinska, M., Ropelewska, E., Xiao, H. W., Mujumdar, A. S., & Law, C. L. (2020). Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Critical Reviews in Food Science and Nutrition, 60(13), 2212-2264. https://doi.org/10.1080/10408398.2019.1632788.

Mikrodalga ve sıcak hava destekli mikrodalga kurutma sistemleriyle işlenen Santa Maria çeşidi armut cipslerin kinetik, enerji tüketimi ve sera gazı analizinin karşılaştırılması

Yıl 2025, Cilt: 42 Sayı: 1, 80 - 88, 30.04.2025
https://doi.org/10.55507/gopzfd.1649321

Öz

Bu çalışmada, mikrodalga (MD) ve hibrit (MACD) (sıcak hava + mikrodalga) kurutma sistemlerinin, ‘Santa Maria’ çeşidi armut meyve yongalarının üretim sürecinde kurutma hızı (DR), nem içeriği (MR), etkili nem difüzyonu (Deff), özgül nem çekme oranı (SMER), özgül enerji tüketimi (SEC) ve sera gazı emisyonu (GHG) özellikleri üzerine etkileri incelenmiştir. Kurutma prosesleri arasında mikrodalga yöntemi (360 W hariç) hibrit yönteme göre ürünleri daha kısa sürede kurutmuştur. MD yönteminin DR değerlerinin MACD yönteminden daha yüksek olduğu bulunmuştur. Kurutma proseslerinin Deff değerleri 2.54 × 10-9 ile 1.01 × 10-8 arasında değişmiştir. MD yöntemi için ortalama SMER değerleri 0,006917 - 0,002803 kg/kWh arasında, SEC değerleri ise 356,8205 - 144,5714 kWh/kg arasında değişmiştir. MACD yöntemi için ortalama SMER değerlerinin 0,0037 - 0,0016 kg/kWh arasında, SEC değerlerinin ise 6261.5 – 2693.6 kWh/kg arasında değiştiği belirlenmiştir. Enerji tüketimindeki artış GHG değerlerini artırmıştır. En düşük GHG değerleri MD - 720 W güç değerinde gerçekleştirilen kurutma prosesinde belirlenmiştir.

Kaynakça

  • Aghbashlo, M., Kianmehr, M.H., & Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865-2871. https://doi.org/10.1016/j.enconman.2008.03.009.
  • Afzal, T. M., Abe, T., & Hikida, Y. (1999). Energy and quality aspects during combined FIR-convection drying of barley. Journal of Food Engineering, 42, 177-182. https://doi.org/10.1016/S0260-8774(99)00117-X.
  • Aktaş, M., Şevik, S., Amini, A., & Khanlari, A. (2016). Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137: 500-515. https://doi.org/10.1016/j.solener.2016.08.036.
  • Alibas, I., Yılmaz, A., Günaydın, S., & Arkain, B. (2021). Kurutma yöntemlerinin deveci armudunun kurutma kinetiği ve renk parametreleri üzerine etkisi. Turkish Journal of Agriculture-Food Science and Technology, 9(5), 897-908.
  • Antonio, G. C., Alves, D. G., Azoubel, P. M., Murr, F. E. X., & Park, K. J. (2008). Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (Ipomoea batatas Lam.). Journal of Food Engineering, 84, 375-382. https://doi.org/10.1016/j.jfoodeng.2007.05.033.
  • Asokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2015). Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of Food Process Engineering, 39(6): 692-701. https://doi.org/10.1111/jfpe.12261.
  • Bonazzi, C., & Dumoulin, E. (2011). Quality changes in food materials as ınfluenced by drying processes. https://doi.org/10.1002/9783527631667.ch1.
  • Calín-Sánchez, A., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs, Foods 9(9): 1–27. https://doi.org/10.3390/foods9091261, 32916839.
  • Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Moustakas, K., Ludwig, W., & Kułażyński, M. (2021). Improvements in drying technologies - Efficient solutions for cleaner production with higher energy efficiency and reduced emission, Journal of Cleaner Production, 320: 128706. https://doi.org/10.1016/j.jclepro.2021.128706.
  • Coşkun-Topuz, F., Bakkalbaşı, E., Aldemir, A., & Javidipour, I. (2022). Drying kinetics and quality properties of Mellaki (Pyrus communis L.) pear slices dried in a novel vacuum-combined infrared oven. Journal of Food Processing and Preservation, 46(10). https://doi.org/10.1111/jfpp.16866.
  • Çeşmeli, M. Ş., & Pençe, İ. (2020). Makine Öğrenimi Yöntemleri ile Türkiye için Sera Gazı Emisyonu Tahmini. Academic Platform-Journal of Engineering and Science, 8(2), 332-348.
  • Dias, P. G. I., Sajiwanie, J. W. A., & Rathnayaka, R. M. U. S. K. (2020). Chemical composition, physicochemical and technological properties of selected fruit peels as a potential food source. International Journal of Fruit Science, 20(2): 240-251. https://doi.org/10.1080/15538362.2020.1717402.
  • Doymaz, İ., & Aktaş, C. (2018). Determination of drying and rehydration characteristics of eggplant slices. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3).
  • Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979-985.
  • FAO (2011). Energy-smart food for people and climate. 2/3/2017.
  • Fumagalli, F., & Silveria, A. M. (2007). Quality evaluation of microwave-dried Packham's Triumph pear. Drying Technology, 23(9-11), 2215-2226. https://doi.org/10.1080/07373930500212701.
  • Guan, L., Xu, H., Jiang, M., Su, D., Guo, Y., Chen, X., Wang, D., & Song, H. (2024). Effects of penetrating microwave hot-air rolling blanching pretreatment for the drying of hawthorn slices: Evaluation of enzyme activity, drying characteristics, moisture migration, microstructure, and quality attributes. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-024-03525-7.
  • Haryanto, B., Hasibuan, R., Lubis, A. H., Wangi, Y., Khosman, H., & Sinaga A. W. (2020). Drying rate of turmeric herbal (Curcuma longa L.) using tray dryer. Journal of Physics: Conference Series, https://doi.org/10.1088/1742-6596/1542/1/012056.
  • Hexa Research (2018). Global fruit powder market size and forecast, by product (speciality fruits, conventional fruits), by application (food & beverages, pharmaceutical, nutraceutical, others), and trend analysis, 2015 - 2025. In Market Research Report - Food & Beverages, (pp. 59).
  • Juhaimi, F. A., Uslu, N., Özcan, M. M., & Babiker, E. F. E. (2016). Effect of drying on antioxidant activity, total phenol and mineral contents of pear fruits. Journal of Food Safety and Food Quality, 67(2016): 113-148. https://doi.org/10.2376/0003-925X-67-164.
  • Junqueira, J., Corrêa, J., & Ernesto D. (2017). Microwave, convective, and intermittent microwave-convective drying of pulsed vacuum osmodehydrated pumpkin slices. Journal of Food Processing and Preservation, 41(6): e13250. https://doi.org/10.1111/jfpp.13250.
  • Kaveh, M., Abbaspour-Gilandeh, Y., & Nowacka, M. (2021). Comparison of different drying techniques and their carbon emissions in green peas. Chemical Engineering and Processing-Process Intensification, 160, 108274.
  • Kaveh, M., Çetin, N., Gilandeh, Y. A., Sharifian, F., & Szymanek, M. (2023). Comparative evaluation of greenhouse gas emissions and specific energy consumption of different drying techniques in pear slices. European Food Research and Technology, 249(12), 3027-3041.
  • Khachik, F., Beecher, G. R., Goli, M. B., & Lusby, W. R. (1991). Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure Appl. Chem. 63, 71–80.
  • Khampakool, A., Soisungwan, S., & Park, S. H. (2019). Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT, 99, 355-363. https://doi.org/10.1016/j.lwt.2018.09.081.
  • Kiliç, E. E. (2014). Konvektif koşullarda kurutulan sebze ve meyvelerin kuruma karakteristiklerinin belirlenmesi (Master's thesis, Fen Bilimleri Enstitüsü).
  • Kutlu, N., İșci, A., & Demirkol, Ö. Ș. (2015). Thin layer drying models in food systems. GIDA Jornal of Food 40(1): 39-46. https://doi.org/10.15237/gida.GD14031.
  • Laur, L. M., & Tian, L. (2011). Provitamin A and vitamin C contents in selected California-grown cantaloupe and honeydew melons and imported melons. J. Food Compost. Anal. 24, 194–201.
  • Li, T. S., Sulaiman, R., Rukayadi, Y., & Ramli, S. (2021). Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids, 116. https://doi.org/10.1016/j.foodhyd.2020.106492.
  • Li, J., Li, Z., Li, L., Song, C., Raghavan, G. S. V., & He, F. (2021). Microwave drying of balsam pear with online aroma detection and control. Journal of Food Engineering, 288: 110139. https://doi.org/10.1016/j.jfoodeng.2020.110139.
  • Li, B., Fan, X., Yu, S., Xia, H., Nong, Y., Bian, J., Sun, M., & Zi, W. (2023). Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study. Energy, 274. https://doi.org/10.1016/j.energy.2023.127347.
  • Majid, I., & Nanda, V. (2017). Effect of sprouting on the physical properties, morphology and flowability of onion powder. Journal of Food Measurement and Characterization, 11(4), 2033–2042. https://doi.org/10.1007/s11694-017-9586-2.
  • Marzec, A., Kowalska, H., Kowalska, J., Domian, E., & Lenart, A. (2020). Influence of pear variety and drying methods on the quality of dried fruit. Molecules, 25(21): 5146. https://doi.org/10.3390/molecules25215146.
  • Moradi, M., Azizi, S., Niakousari, M., Kamgar, S., & Khaneghah, A. M. (2020). Drying of green bell pepper slices using an IR-assisted Spouted Bed Dryer: An assessment of drying kinetics and energy consumption. Innovative Food Science & Emerging Technologies, 60. https://doi.org/10.1016/j.ifset.2019.102280.
  • Morais, R. M. S. C., Morais, A. M. M. B., Dammak, I., Bonilla, J., Sobral, P. J. A., Laguerre, J. C., Afonso, M. J., & Ramalhosa, E. C. D. (2018). Functional Dehydrated Foods for Health Preservation. Journal of Food Quality, https://doi.org/10.1155/2018/1739636.
  • Moses, J. A., & Authority, F. D. (2014). Novel drying techniques for the food industry, Food Engineering Reviews. (2014) 6, no. 3, 43–55, https://doi.org/10.1007/s12393-014-9078-7, 2-s2.0-84905190068.
  • Motevali, A., & Kloor, R.T. (2017). A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. Journal of Cleaner Production, 154, 445-461.
  • Mouhoubi, K., Boulekbache-Makhlouf, L., Mehaba, W., Himed-Idir, H., & Madani, K. (2021). Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. Journal of Food Process Engineering, https://doi.org/10.1111/jfpe.13932.
  • Nguyen, T. A., Verboven, P., Scheerlinck, N., Vandewalle, S., & Nicolaï, B. M. (2006). Estimation of effective diffusivity of pear tissue and cuticle by means of a numerical water diffusion model. Journal of Food Engineering, 72(1), 63-72.
  • Nizamloğlu, N. M. (2022). Farklı sıcaklık ve mikrodalga güçlerinde kurutulan elma dilimlerinin kurutma özellikleri. Akademik Gıda, 20(3), 253-262. https://doi.org/10.24323/akademik-gida.1186984.
  • Onwuzuruike, U. A., Iguh, B., Uzochukwu, U. C., & Ezuma, V. (2022). Effect of different drying method on the quality characteristics of african pear (Dacroydes edulis) mesocarp flour. Nigeria Agricultural Journal, 53(1), 91-102.
  • Önal, B., Adiletta, G., Matteo, M. D., Russo, P., Ramos, I. N., & Silva, C. L. M. (2021). Microwave and ultrasound pre-treatments for drying of the “rocha” pear: ımpact on phytochemical parameters, color changes and drying kinetics. Foods, 10(4), 53. https://doi.org/10.3390/foods10040853.
  • Özbek, H. N. (2021). Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. LWT, 152, https://doi.org/10.1016/j.lwt.2021.112332.
  • Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2014). Foam-mat drying of cantaloupe (Cucumis melo): optimization of foaming parameters and ınvestigating drying characteristics. Journal of Food Processing and Preservation, 39(6), 1798-1808.
  • Shen, L., Zhu, Y., Liu, C., Wang, L., Liu, H., Kamruzzaman, M., Liu, C., Zhang, Y., & Zheng, X. (2020). Modelling of moving drying process and analysis of drying characteristics for germinated brown rice under continuous microwave drying. Biosystems Engineering, 195, 64-88. https://doi.org/10.1016/j.biosystemseng.2020.05.002.
  • Silva, V., Costa, J. J, Figueiredo, A. R., Nunes, J., Nunes, C., Ribeiro, T.I., & Pereira, B. (2016). Büzülme ve değişken difüzyon katsayısı dikkate alınarak armutların üç aşamalı aralıklı kurutulması üzerine çalışma. Gıda Mühendisliği Dergisi , 180 , 77-86.
  • Sutar, P. P., & Prasad, S. (2008). Microwave Drying Technology-Recent Developments and R&D Needs in India. In proceedings of 42nd ISAE Annual Convention, during February 1-3.
  • Tepe, T. K., & Tepe, F. B. (2024). Improvement of pear slices drying by pretreatments and microwave-assisted convective drying method: drying characteristics, modeling of artificial neural network, principal component analysis of quality parameters. Journal of Thermal Analysis and Calorimetry, 149, 7313-7328. https://doi.org/10.1007/s10973-024-13280-8.
  • Tunçkal, C., Ozkan-Karabacak, A., Tamer, C. E., Yolcı-Omeroglu, P., & Goksel, Z. (2022). Mathematical modelling and optimization of melon slice drying with response surface methodology in a heat pump drying system. Latin American Applied Research, 52(2), 101-110.
  • Turkiewicz, I. P., Wojdylo, A., Tkacz, K., Lech, K., Michalska-Ciechanowska, A., & Nowicka, P. (2020). The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 323, https://doi.org/10.1016/j.foodchem.2020.126830.
  • Wu, X. F., Zhang, M., & Bhandaria, B. (2019). A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innovative Food Science & Emerging Technologies, 54, 34-42. https://doi.org/10.1016/j.ifset.2019.03.003.
  • Yano, M., Kato, M., Ikoma, Y., Kawasaki, A., Fukazawa, Y., Sugiura, M., Matsumoto, H., Oohara, Y., Nagao, A., & Ogawa, K. (2005). Quantitation of carotenoids in raw and processed fruits in Japan. Food Sci. Technol. Res. 11, 13-18.
  • Zhang, H., Zheng, W., Yan, L., Liu, W., Yao, F., Liu, C., & Zheng, L. (2023). Effects of vacuum microwave combined with freeze-drying on the physicochemical properties, phenolic compounds, and antioxidant capacity of pear fruit slices. Journal of Food Science, 88(7): 2807-2820. https://doi.org/10.1111/1750-3841.16653.
  • Zia, S., Khan, M. R., & Aadil, R. M. (2023). Kinetic modeling of different drying techniques and their influence on color, bioactive compounds, antioxidant indices and phenolic profile of watermelon rind. Journal of Food Measurement and Characterization, 17, 1068–1081.
  • Zielinska, M., Ropelewska, E., Xiao, H. W., Mujumdar, A. S., & Law, C. L. (2020). Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Critical Reviews in Food Science and Nutrition, 60(13), 2212-2264. https://doi.org/10.1080/10408398.2019.1632788.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımsal Enerji Sistemleri
Bölüm Araştırma Makaleleri
Yazarlar

Muhammed Taşova 0000-0001-5025-0807

Süreyya Ayvalıoğlu 0009-0004-6238-9637

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 1 Mart 2025
Kabul Tarihi 14 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 42 Sayı: 1

Kaynak Göster

APA Taşova, M., & Ayvalıoğlu, S. (2025). Comparison of kinetics, energy consumption, and GHG analysis of Santa Maria variety pear chips processed by microwave and hot air-assisted microwave drying systems. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 42(1), 80-88. https://doi.org/10.55507/gopzfd.1649321