In this paper we consider the operator L generated in 𝐿∇2 [𝑎, 𝑏] by the boundary problem−[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡) = 0, 𝑡 ∈ [𝑎, 𝑏],𝑦(𝑎) − 𝑘𝑦∆(𝑎) = 0, 𝑦(𝑏) + 𝐾𝑦∆(𝑏) = 0 where 𝑞(𝑡) is partial continuous, 𝑞(𝑡) ≥ 0, 𝑘 ≥ 0,𝐾 ≥ 0. In this paper, spectral properties of Schrodinger problem on finite time scale is examined and the formula of convergent expansion is obtained which is form of series in terms of the eigenfunctions in 𝐿∇2 [𝑎, 𝑏] space.
Time scale delta and nabla derivatives Schrödinger operator eigenvalue eigenfunction.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Mathematics |
Yazarlar | |
Yayımlanma Tarihi | 21 Haziran 2016 |
Yayımlandığı Sayı | Yıl 2016 Cilt: 29 Sayı: 2 |