Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 12 Sayı: 2, 608 - 618, 30.06.2025
https://doi.org/10.54287/gujsa.1662033

Öz

Kaynakça

  • Arıcan, G. O., & Yılmaz, B. A. (2024). A 10-W GaN on SiC CPW MMIC High-Power Amplifier With 44.53% PAE for X-Band AESA Radar Applications. Electrica, 24(3), 780-788. https://doi.org/10.5152/electrica.2024.24090
  • Arican, G. O., Akcam, N., & Yazgan, E. (2019, April). Ku-band MMIC LNA design for space applications. In 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE) (pp. 274-278). IEEE. https://doi.org/10.1109/ICEEE2019.2019.00059
  • Arican, G. O., Dokmetas, B., Akcam, N., & Yazgan, E. (2019, November). 28-36 GHz MMIC LNA Design for Satellite Applications. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 726-729). IEEE. https://doi.org/10.23919/ELECO47770.2019.8990444
  • Arican, G. O., Akcam, N., & Yazgan, E. (2021). Ku‐band GaAs mHEMT MMIC and RF front‐end module for space applications. Microwave and Optical Technology Letters, 63(2), 417-425. https://doi.org/10.1002/mop.32613
  • Arican, G. O., & Akcam, N. (2022). Design of a Low Cost X-Band LNA with Sub-1-dB NF for SATCOM Applications. Gazi University Journal of Science, 36(1), 208-2018. https://doi.org/10.35378/gujs.998008
  • Cuadrado-Calle, D., Kantanen, M., Valenta, V., & Ayllón, N. (2024). A GaN-on-Si MMIC LNA for Spaceborne Cloud Profiling Radars and W-Band Telecom Links. IEEE Microwave and Wireless Technology Letters, 34(12), 1359-1362. https://doi.org/10.1109/LMWT.2024.3469276
  • Gao, L., Wagner, E., & Rebeiz, G. M. (2019). Design of E-and W-band low-noise amplifiers in 22-nm CMOS FD-SOI. IEEE Transactions on Microwave Theory and Techniques, 68(1), 132-143. https://doi.org/10.1109/TMTT.2019.2944820
  • Kobayashi, K. W., & Kumar, V. (2021). A broadband 70–110-GHz E-/W-band LNA using a 90-nm T-gate GaN HEMT technology. IEEE Microwave and Wireless Components Letters, 31(7), 885-888. https://doi.org/10.1109/LMWC.2021.3076360
  • Leuther, A., Tessmann, A., Kallfass, I., Losch, R., Seelmann-Eggebert, M., Wadefalk, N., ... & Ambacher, O. (2009, May). Metamorphic HEMT technology for low-noise applications. In 2009 IEEE International Conference on Indium Phosphide & Related Materials (pp. 188-191). IEEE. https://doi.org/10.1109/ICIPRM.2009.5012475
  • Li, Z., Yan, P., Chen, J., & Hou, D. (2020, September). A wide-bandwidth W-band LNA in GaAs 0.1 μm pHEMT technology. In 2020 IEEE MTT-S International Wireless Symposium (IWS) (pp. 1-3). IEEE. https://doi.org/10.1109/IWS49314.2020.9360082
  • Liu, C., Ren, Q., & Yang, F. (2019, March). A W-band LNA for Passive millimeter wave imaging Application. In 2019 China Semiconductor Technology International Conference (CSTIC) (pp. 1-3). IEEE. https://doi.org/10.1109/CSTIC.2019.8755738
  • Longhi, P. E., Colangeli, S., Ciccognani, W., Parand, P., Serino, A., & Limiti, E. (2024). 4.1-dB Noise Figure and 20-dB Gain 92–115-GHz GaAs LNA With Hot Via Interconnections. IEEE Microwave and Wireless Technology Letters. https://doi.org/10.1109/LMWT.2024.3520229
  • Murthy, B. V., Manjushree, T. M., Meghana, N., Ramya, H. G., & Vaishnavi, V. (2024, May). A millimeter Wave MMIC Power Amplifier using 0.15 um GaN for Space Communication Systems. In 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSSES62373.2024.10561334
  • Sharma, S. S., Sharma, S., Longhi, P., Colangeli, S., Ciccognani, W., & Limiti, E. (2024, June). Mismatch based implementation of W band LNA using GaAs pHEMTs. In 2024 19th Conference on Ph. D Research in Microelectronics and Electronics (PRIME) (pp. 1-3). IEEE. https://doi.org/10.1109/PRIME61930.2024.10559742
  • Tanahashi, N., Kanaya, K., Matsuzuka, T., Katoh, I., Notani, Y., Ishida, T., ... & Matsuda, Y. (2003, June). A W-band ultra low noise amplifier MMIC using GaAs pHEMT. In IEEE MTT-S International Microwave Symposium Digest, 2003 (Vol. 3, pp. 2225-2228). IEEE. https://doi.org/10.1109/MWSYM.2003.1210607
  • Thome, F., Leuther, A., Massler, H., Schlechtweg, M., & Ambacher, O. (2017, June). Comparison of a 35-nm and a 50-nm gate-length metamorphic HEMT technology for millimeter-wave low-noise amplifier MMICs. In 2017 IEEE MTT-S International Microwave Symposium (IMS) (pp. 752-755). IEEE. https://doi.org/10.1109/MWSYM.2017.8058685
  • Thome, F., Heinz, F., & Leuther, A. (2020). InGaAs MOSHEMT W-band LNAs on silicon and gallium arsenide substrates. IEEE Microwave and Wireless Components Letters, 30(11), 1089-1092. https://doi.org/10.1109/LMWC.2020.3025674
  • Thome, F., Brückner, P., Leone, S., & Quay, R. (2021). A wideband E/W-band low-noise amplifier MMIC in a 70-nm gate-length GaN HEMT technology. IEEE Transactions on Microwave Theory and Techniques, 70(2), 1367-1376. https://doi.org/10.1109/TMTT.2021.3134645
  • Tong, X., Zheng, P., & Zhang, L. (2020). Low-noise amplifiers using 100-nm gate length GaN-on-silicon process in W-band. IEEE Microwave and Wireless Components Letters, 30(10), 957-960. https://doi.org/10.1109/LMWC.2020.3019816
  • Wang, Y., Lin, F., Sun, H., Wu, H., Xu, C., Fang, Y., ... & Zeng, Z. (2023). W-band GaN T/R single chip with 1-W output power and 6.4-dB noise figure for AESA applications. IEEE Transactions on Microwave Theory and Techniques, 72(2), 1056-1069. https://doi.org/10.1109/TMTT.2023.3304987
  • Yawei, W., & Weihua, Y. (2013, August). Design and simulation of a W-band broadband Low Noise Amplifier. In 2013 IEEE International conference on microwave technology & computational electromagnetics (pp. 119-122). IEEE. https://doi.org/10.1109/ICMTCE.2013.6812435
  • Zhang, J., Lu, Y., & Sun, P. (2018, December). W-band Broadband Low Noise Amplifier Using 0.1−μm GaAs pHEMT Process. In 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 1-3). IEEE. https://doi.org/10.1109/ISAPE.2018.8634085

Analysis and Design of a W-Band MMIC LNA with 4.2 dB Noise Figure in GaAs-based 100 nm pHEMT Technology

Yıl 2025, Cilt: 12 Sayı: 2, 608 - 618, 30.06.2025
https://doi.org/10.54287/gujsa.1662033

Öz

A W-band Monolithic Microwave Integrated Circuit (MMIC) Low Noise Amplifier (LNA) is presented in this paper. The UMS PH10 process, which is the GaAs/InGaAs based pseudomorphic High Electron Mobility Transistors (pHEMTs) technology, is utilized to design the proposed W-band MMIC LNA. The proposed LNA has a simulated noise figure (NF) of 4.2 dB in the operating frequency range from 94 to 104 GHz while the simulated minimum noise figure (NFmin) of 3.9 dB at the center frequency. Besides, proposed W-band MMIC LNA has very good reflection loss performance, well below -10 dB and high small signal gain (S21), above 16.3 dB. Moreover, MMIC LNA is unconditionally stable up to 160 GHz. Furthermore, the proposed 3-stage MMIC LNA has a total DC power dissipation of 120 mW DC while drain voltage is 2 V. The proposed W-band LNA has a small size of 2.2 mm x 1.2 mm which yields a total chip size of 2.64 mm2.

Kaynakça

  • Arıcan, G. O., & Yılmaz, B. A. (2024). A 10-W GaN on SiC CPW MMIC High-Power Amplifier With 44.53% PAE for X-Band AESA Radar Applications. Electrica, 24(3), 780-788. https://doi.org/10.5152/electrica.2024.24090
  • Arican, G. O., Akcam, N., & Yazgan, E. (2019, April). Ku-band MMIC LNA design for space applications. In 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE) (pp. 274-278). IEEE. https://doi.org/10.1109/ICEEE2019.2019.00059
  • Arican, G. O., Dokmetas, B., Akcam, N., & Yazgan, E. (2019, November). 28-36 GHz MMIC LNA Design for Satellite Applications. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 726-729). IEEE. https://doi.org/10.23919/ELECO47770.2019.8990444
  • Arican, G. O., Akcam, N., & Yazgan, E. (2021). Ku‐band GaAs mHEMT MMIC and RF front‐end module for space applications. Microwave and Optical Technology Letters, 63(2), 417-425. https://doi.org/10.1002/mop.32613
  • Arican, G. O., & Akcam, N. (2022). Design of a Low Cost X-Band LNA with Sub-1-dB NF for SATCOM Applications. Gazi University Journal of Science, 36(1), 208-2018. https://doi.org/10.35378/gujs.998008
  • Cuadrado-Calle, D., Kantanen, M., Valenta, V., & Ayllón, N. (2024). A GaN-on-Si MMIC LNA for Spaceborne Cloud Profiling Radars and W-Band Telecom Links. IEEE Microwave and Wireless Technology Letters, 34(12), 1359-1362. https://doi.org/10.1109/LMWT.2024.3469276
  • Gao, L., Wagner, E., & Rebeiz, G. M. (2019). Design of E-and W-band low-noise amplifiers in 22-nm CMOS FD-SOI. IEEE Transactions on Microwave Theory and Techniques, 68(1), 132-143. https://doi.org/10.1109/TMTT.2019.2944820
  • Kobayashi, K. W., & Kumar, V. (2021). A broadband 70–110-GHz E-/W-band LNA using a 90-nm T-gate GaN HEMT technology. IEEE Microwave and Wireless Components Letters, 31(7), 885-888. https://doi.org/10.1109/LMWC.2021.3076360
  • Leuther, A., Tessmann, A., Kallfass, I., Losch, R., Seelmann-Eggebert, M., Wadefalk, N., ... & Ambacher, O. (2009, May). Metamorphic HEMT technology for low-noise applications. In 2009 IEEE International Conference on Indium Phosphide & Related Materials (pp. 188-191). IEEE. https://doi.org/10.1109/ICIPRM.2009.5012475
  • Li, Z., Yan, P., Chen, J., & Hou, D. (2020, September). A wide-bandwidth W-band LNA in GaAs 0.1 μm pHEMT technology. In 2020 IEEE MTT-S International Wireless Symposium (IWS) (pp. 1-3). IEEE. https://doi.org/10.1109/IWS49314.2020.9360082
  • Liu, C., Ren, Q., & Yang, F. (2019, March). A W-band LNA for Passive millimeter wave imaging Application. In 2019 China Semiconductor Technology International Conference (CSTIC) (pp. 1-3). IEEE. https://doi.org/10.1109/CSTIC.2019.8755738
  • Longhi, P. E., Colangeli, S., Ciccognani, W., Parand, P., Serino, A., & Limiti, E. (2024). 4.1-dB Noise Figure and 20-dB Gain 92–115-GHz GaAs LNA With Hot Via Interconnections. IEEE Microwave and Wireless Technology Letters. https://doi.org/10.1109/LMWT.2024.3520229
  • Murthy, B. V., Manjushree, T. M., Meghana, N., Ramya, H. G., & Vaishnavi, V. (2024, May). A millimeter Wave MMIC Power Amplifier using 0.15 um GaN for Space Communication Systems. In 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSSES62373.2024.10561334
  • Sharma, S. S., Sharma, S., Longhi, P., Colangeli, S., Ciccognani, W., & Limiti, E. (2024, June). Mismatch based implementation of W band LNA using GaAs pHEMTs. In 2024 19th Conference on Ph. D Research in Microelectronics and Electronics (PRIME) (pp. 1-3). IEEE. https://doi.org/10.1109/PRIME61930.2024.10559742
  • Tanahashi, N., Kanaya, K., Matsuzuka, T., Katoh, I., Notani, Y., Ishida, T., ... & Matsuda, Y. (2003, June). A W-band ultra low noise amplifier MMIC using GaAs pHEMT. In IEEE MTT-S International Microwave Symposium Digest, 2003 (Vol. 3, pp. 2225-2228). IEEE. https://doi.org/10.1109/MWSYM.2003.1210607
  • Thome, F., Leuther, A., Massler, H., Schlechtweg, M., & Ambacher, O. (2017, June). Comparison of a 35-nm and a 50-nm gate-length metamorphic HEMT technology for millimeter-wave low-noise amplifier MMICs. In 2017 IEEE MTT-S International Microwave Symposium (IMS) (pp. 752-755). IEEE. https://doi.org/10.1109/MWSYM.2017.8058685
  • Thome, F., Heinz, F., & Leuther, A. (2020). InGaAs MOSHEMT W-band LNAs on silicon and gallium arsenide substrates. IEEE Microwave and Wireless Components Letters, 30(11), 1089-1092. https://doi.org/10.1109/LMWC.2020.3025674
  • Thome, F., Brückner, P., Leone, S., & Quay, R. (2021). A wideband E/W-band low-noise amplifier MMIC in a 70-nm gate-length GaN HEMT technology. IEEE Transactions on Microwave Theory and Techniques, 70(2), 1367-1376. https://doi.org/10.1109/TMTT.2021.3134645
  • Tong, X., Zheng, P., & Zhang, L. (2020). Low-noise amplifiers using 100-nm gate length GaN-on-silicon process in W-band. IEEE Microwave and Wireless Components Letters, 30(10), 957-960. https://doi.org/10.1109/LMWC.2020.3019816
  • Wang, Y., Lin, F., Sun, H., Wu, H., Xu, C., Fang, Y., ... & Zeng, Z. (2023). W-band GaN T/R single chip with 1-W output power and 6.4-dB noise figure for AESA applications. IEEE Transactions on Microwave Theory and Techniques, 72(2), 1056-1069. https://doi.org/10.1109/TMTT.2023.3304987
  • Yawei, W., & Weihua, Y. (2013, August). Design and simulation of a W-band broadband Low Noise Amplifier. In 2013 IEEE International conference on microwave technology & computational electromagnetics (pp. 119-122). IEEE. https://doi.org/10.1109/ICMTCE.2013.6812435
  • Zhang, J., Lu, Y., & Sun, P. (2018, December). W-band Broadband Low Noise Amplifier Using 0.1−μm GaAs pHEMT Process. In 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 1-3). IEEE. https://doi.org/10.1109/ISAPE.2018.8634085
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyo Frekansı Mühendisliği
Bölüm Elektrik & Elektronik Mühendisliği
Yazarlar

Galip Orkun Arıcan 0000-0002-9375-886X

Burak Alptuğ Yılmaz 0000-0003-1871-7272

Erken Görünüm Tarihi 17 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 22 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 2

Kaynak Göster

APA Arıcan, G. O., & Yılmaz, B. A. (2025). Analysis and Design of a W-Band MMIC LNA with 4.2 dB Noise Figure in GaAs-based 100 nm pHEMT Technology. Gazi University Journal of Science Part A: Engineering and Innovation, 12(2), 608-618. https://doi.org/10.54287/gujsa.1662033