Araştırma Makalesi
BibTex RIS Kaynak Göster

Yenilenebilir Enerji Sistemleri için Düşük Maliyetli ve Yüksek Verimli Yeni Bir 15 Seviyeli Hibrit MLI Topolojisi

Yıl 2025, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1631487

Öz

Bu makalede, tek DC kaynaklı çok seviyeli invertörler (ÇSE) için yeni bir hibrit model önerilmektedir. Önerilen anahtarlamalı diyot (AD) ve yüksek frekans bağlantısı (YFB) hibrit yapısı, tek bir DC kaynak gerilimi kullanır ve PUC devresine çoklu DA gerilimleri sağlar. ÇSE, yalnızca 8 güç anahtarı kullanarak çıkış voltajı dalga formunda 15 seviye üretir. Kontrol karmaşıklığını azaltır ve 2,71'lik düşük maliyet fonksiyonu (MF) değeriyle uygun maliyetli bir çözüm sağlar. Literatürdeki son çalışmalarla kapsamlı bir karşılaştırma yapılmıştır. Çoğu çalışmanın aksine, gerilim kazancı için YFB kullanır. Yük akımının çoğu doğrudan giriş kaynağından çekilir ve küçük bir kısmı yüksek frekans transformatörü üzerinden çekilir. Bu, transformatör boyutunu ve maliyetlerini önemli ölçüde azaltır. Endüktif yüklerle yapılan testlerde, çıkış neredeyse saf sinüzoidal dalga biçimindedir. Toplam harmonik bozulma (THB) 50Ω + 25mH düşük endüktif yük ile %1,41 olarak ölçülmüştür. PLECS ile yapılan kayıp analizinde invertör verimliliği %96,48'dir. Polarite geçişleri sırasında oluşan gerilim pikleri diyot yerine kontrollü güç anahtarları kullanılarak giderilmiş ve stabilize bir çıkış elde edilmiştir.

Kaynakça

  • [1] A. Bughneda, M. Salem, A. Richelli, D. Ishak, and S. Alatai, “Review of Multilevel Inverters for PV Energy System Applications,” Energies 2021, Vol. 14, Page 1585, vol. 14, no. 6, p. 1585, Mar. 2021, doi: 10.3390/EN14061585.
  • [2] F. Bilimleri Dergisi, A. Yaseen Hamad, E. Kürṣat Yaylacı, R. Khalil Antar, G. Üniversitesi, and M. Bilgisi, “Voltage Level Managements of Multilevel Inverter Based on Renewable Energy Sources and Environment Conditions,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, pp. 1–1, Mar. 2025, doi: 10.29109/GUJSC.1503575.
  • [3] K. K. Mahto, P. Das, D. Das, S. Mittal, and B. Mahato, “A New Criss-Cross-Based Asymmetrically Configured T-Type Multi-level Inverter,” Lecture Notes in Electrical Engineering, vol. 1148 LNEE, pp. 1–14, 2024, doi: 10.1007/978-981-97-0154-4_1.
  • [4] S. Iqbal, N. F. Alshammari, M. Shouran, and J. Massoud, “Smart and Sustainable Wireless Electric Vehicle Charging Strategy with Renewable Energy and Internet of Things Integration,” Sustainability 2024, Vol. 16, Page 2487, vol. 16, no. 6, p. 2487, Mar. 2024, doi: 10.3390/SU16062487.
  • [5] A. K. Aktar, A. Taşcıkaraoğlu, S. S. Gürleyük, and J. P. S. Catalão, “A framework for dispatching of an electric vehicle fleet using vehicle-to-grid technology,” Sustainable Energy, Grids and Networks, vol. 33, p. 100991, Mar. 2023, doi: 10.1016/J.SEGAN.2022.100991.
  • [6] M. Karakılıç, “A Novel Enhanced Switched Capacitor (ESC) Unit and ESC Based 9L MLI Topology,” Journal of Electrical Engineering & Technology, 2025, doi: 10.1007/s42835-025-02202-9.
  • [7] G. Ü. Fen, B. Dergisi, and O. Aytar, “Darlington CMOS İnverter Tabanlı Paralel Analog-Sayısal Dönüştürücü Tasarımı,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 6, no. 1, pp. 67–78, Mar. 2018, doi: 10.29109/HTTP-GUJSC-GAZI-EDU-TR.358045.
  • [8] N. Güler, “9-Seviyeli Paket E-Hücreli Eviriciler için Üstün Burulma Algoritması Tabanlı Kayan Kipli Kontrol Tasarımı,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 9, no. 1, pp. 57–70, Mar. 2021, doi: 10.29109/GUJSC.846704.
  • [9] E. Babaei, “A Cascade Multilevel Converter Topology With Reduced Number of Switches,” IEEE Trans Power Electron, vol. 23, no. 6, 2008, doi: 10.1109/TPEL.2008.2005192.
  • [10] M. Karakılıç, “A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven-Level Multilevel Inverter Topology,” International Journal of Circuit Theory and Applications, vol. 0, pp. 1–17, Feb. 2025, doi: 10.1002/CTA.4469.
  • [11] M. D. Siddique, M. Aslam Husain, A. Iqbal, S. Mekhilef, and A. Riyaz, “Single-Phase 9L Switched-Capacitor Boost Multilevel Inverter (9L-SC-BMLI) Topology,” IEEE Trans Ind Appl, vol. 59, no. 1, 2023, doi: 10.1109/TIA.2022.3208893.
  • [12] P. Omer and J. Kumar, “A Review on Reduced Switch Count Multilevel Inverter Topologies,” 2020, doi: 10.1109/ACCESS.2020.2969551.
  • [13] E. Babaei, M. F. Kangarlu, and M. Sabahi, “Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters,” 2013, doi: 10.1049/iet-pel.2013.0057.
  • [14] M. Farhadi Kangarlu and E. Babaei, “A Generalized Cascaded Multilevel Inverter Using Series Connection of Submultilevel Inverters,” IEEE Trans Power Electron, vol. 28, no. 2, p. 625, 2013, doi: 10.1109/TPEL.2012.2203339.
  • [15] R. S. Alishah, S. H. Hosseini, E. Babaei, and M. Sabahi, “Optimal Design of New Cascaded Switch-Ladder Multilevel Inverter Structure,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2072–2080, Mar. 2017, doi: 10.1109/TIE.2016.2627019.
  • [16] M. Saeedian, J. Adabi, and S. M. Hosseini, “Cascaded multilevel inverter based on symmetric-asymmetric DC sources with reduced number of components,” 2017, doi: 10.1049/iet-pel.2017.0039.
  • [17] E. Samadaei, A. Sheikholeslami, S. A. Gholamian, and J. Adabi, “A Square T-Type (ST-Type) Module for Asymmetrical Multilevel Inverters,” IEEE Trans Power Electron, vol. 33, no. 2, pp. 987–996, Feb. 2018, doi: 10.1109/TPEL.2017.2675381.
  • [18] J. C. Wu, H. L. Jou, and S. Y. Liou, “Asymmetric diode-clamped multi-level inverter based renewable power generation system,” International Journal of Electronics, vol. 108, no. 1, 2021, doi: 10.1080/00207217.2020.1756455.
  • [19] M. Hosseinzadeh, M. Sarebanzadeh, M. Rivera, S. Member, E. Babaei, and P. Wheeler, “A Reduced Single-Phase Switched-Diode Cascaded Multilevel Inverter,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, 2021, doi: 10.1109/JESTPE.2020.3010793.
  • [20] V. Krithika and C. Subramani, “A comprehensive review on choice of hybrid vehicles and power converters, control strategies for hybrid electric vehicles,” Int J Energy Res, vol. 42, no. 5, pp. 1789–1812, Apr. 2018, doi: 10.1002/ER.3952.
  • [21] M. Karakılıç and M. N. Almalı, “Design of Hybrid Switched Diode Multilevel Inverter Using Single DC Source,” Journal of Electrical Engineering and Technology, pp. 1–12, Feb. 2024, doi: 10.1007/S42835-024-01832-9/FIGURES/16.
  • [22] H. Hatas and M. N. Almali, “Design and control of a novel topology for multilevel inverters using high frequency link,” Electric Power Systems Research, vol. 221, 2023, doi: 10.1016/j.epsr.2023.109458.
  • [23] M. D. Siddique et al., “Single-Phase Boost Switched-Capacitor-Based Multilevel Inverter Topology With Reduced Switching Devices,” IEEE J Emerg Sel Top Power Electron, vol. 10, no. 4, 2022, doi: 10.1109/JESTPE.2021.3129063.
  • [24] R. S. Alishah, S. H. Hosseini, E. Babaei, and M. Sabahi, “Optimal Design of New Cascaded Switch-Ladder Multilevel Inverter Structure,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2072–2080, Mar. 2017, doi: 10.1109/TIE.2016.2627019.
  • [25] M. Zaid, A. R. Moonis, A. Sarwar, A. Iqbal, and M. Tayyab, “Seven-level single-source switched capacitor inverter with triple boosting capability and high reliability,” International Journal of Circuit Theory and Applications, vol. 52, no. 8, pp. 3844–3869, Aug. 2024, doi: 10.1002/CTA.3946.
  • [26] M. Daula Siddique, S. Mekhilef, M. Shah, A. Sarwar, A. Iqbal, and A. Memon, “A New Multilevel Inverter Topology With Reduce Switch Count,” 2019, doi: 10.1109/ACCESS.2019.2914430.
  • [27] W. Lin, J. Zeng, B. Fu, Z. Yan, and J. Liu, “Switched-capacitor Based Seven-level Boost Inverter with a Reduced Number of Devices,” CSEE Journal of Power and Energy Systems, vol. 10, no. 1, pp. 381–391, Jan. 2024, doi: 10.17775/CSEEJPES.2020.02620.
  • [28] S. Islam, M. Daula Siddique, M. R. Hussan, and A. Iqbal, “Reduced Voltage Stress and Spikes in Source Current of 7-Level Switched-Capacitor Based Multilevel Inverter,” IEEE Access, vol. 11, pp. 74722–74735, 2023, doi: 10.1109/ACCESS.2023.3297496.
  • [29] J. S. Mohamed Ali and V. Krishnasamy, “Compact Switched Capacitor Multilevel Inverter (CSCMLI) with Self-Voltage Balancing and Boosting Ability,” IEEE Trans Power Electron, vol. 34, no. 5, 2019, doi: 10.1109/TPEL.2018.2871378.
  • [30] M. Wasiq, M. D. Siddique, A. Sarwar, A. Iqbal, and S. Mekhilef, “A triple boost 13-level switched-capacitor based multi-level inverter topology for solar PV applications,” International Journal of Circuit Theory and Applications, vol. 50, no. 12, 2022, doi: 10.1002/cta.3391.
  • [31] S. Islam, D. Siddique, S. Mekhilef, M. Al-Hitmi, and A. Iqbal, “A Switched Capacitor-Based 13-Level Inverter With Reduced Switch Count,” IEEE Trans Ind Appl, vol. 58, no. 6, p. 7373, 2022, doi: 10.1109/TIA.2022.3191302.
  • [32] T. Roy, P. K. Sadhu, and A. Dasgupta, “Cross-Switched Multilevel Inverter Using Novel Switched Capacitor Converters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8521–8532, Nov. 2019, doi: 10.1109/TIE.2018.2889632.
  • [33] E. Samadaei, M. Kaviani, and K. Bertilsson, “A 13-Levels Module (K-Type) With Two DC Sources for Multilevel Inverters,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 66, no. 7, 2019, doi: 10.1109/TIE.2018.2868325.
  • [34] T. Roy and P. K. Sadhu, “A Step-Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters with Reduced Components,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 236–247, Jan. 2021, doi: 10.1109/TIE.2020.2965458.
  • [35] M. Sarebanzadeh et al., “A 15-Level Switched-Capacitor Multilevel Inverter Structure with Self-Balancing Capacitor,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, 2022, doi: 10.1109/TCSII.2021.3123115.

A Cost-Effective and High-Efficiency Novel 15-Level Hybrid MLI Topology for Renewable Energy Systems

Yıl 2025, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1631487

Öz

In this paper, a new hybrid model for single DC source multilevel inverters (MLIs) is proposed. The proposed switched diode (SD) and high frequency link (HFL) hybrid structure utilizes a single DC source voltage and supplies multiple DC voltages to the PUC circuit. The MLI generates 15 levels in the output voltage waveform using only 8 power switches. It reduces the control complexity and provides a cost-effective solution with a low-cost function (CF) value of 2.71. A comprehensive comparison with recent work in literature has been made. Unlike most studies, it uses HFL for voltage gain. Most of the load current is drawn directly from the input source and a small portion is drawn through the high frequency transformer. This significantly reduces transformer size and costs. In tests with inductive loads, the output is near pure sinusoidal waveform. The total harmonic distortion (THD) is measured as 1.41% with a low inductive load of 50Ω + 25mH. Inverter efficiency is 96.48% in loss analysis with PLECS. The voltage peaks that occur during polarity transitions were eliminated by using controlled power switches instead of diodes and a stabilized output was obtained.

Kaynakça

  • [1] A. Bughneda, M. Salem, A. Richelli, D. Ishak, and S. Alatai, “Review of Multilevel Inverters for PV Energy System Applications,” Energies 2021, Vol. 14, Page 1585, vol. 14, no. 6, p. 1585, Mar. 2021, doi: 10.3390/EN14061585.
  • [2] F. Bilimleri Dergisi, A. Yaseen Hamad, E. Kürṣat Yaylacı, R. Khalil Antar, G. Üniversitesi, and M. Bilgisi, “Voltage Level Managements of Multilevel Inverter Based on Renewable Energy Sources and Environment Conditions,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, pp. 1–1, Mar. 2025, doi: 10.29109/GUJSC.1503575.
  • [3] K. K. Mahto, P. Das, D. Das, S. Mittal, and B. Mahato, “A New Criss-Cross-Based Asymmetrically Configured T-Type Multi-level Inverter,” Lecture Notes in Electrical Engineering, vol. 1148 LNEE, pp. 1–14, 2024, doi: 10.1007/978-981-97-0154-4_1.
  • [4] S. Iqbal, N. F. Alshammari, M. Shouran, and J. Massoud, “Smart and Sustainable Wireless Electric Vehicle Charging Strategy with Renewable Energy and Internet of Things Integration,” Sustainability 2024, Vol. 16, Page 2487, vol. 16, no. 6, p. 2487, Mar. 2024, doi: 10.3390/SU16062487.
  • [5] A. K. Aktar, A. Taşcıkaraoğlu, S. S. Gürleyük, and J. P. S. Catalão, “A framework for dispatching of an electric vehicle fleet using vehicle-to-grid technology,” Sustainable Energy, Grids and Networks, vol. 33, p. 100991, Mar. 2023, doi: 10.1016/J.SEGAN.2022.100991.
  • [6] M. Karakılıç, “A Novel Enhanced Switched Capacitor (ESC) Unit and ESC Based 9L MLI Topology,” Journal of Electrical Engineering & Technology, 2025, doi: 10.1007/s42835-025-02202-9.
  • [7] G. Ü. Fen, B. Dergisi, and O. Aytar, “Darlington CMOS İnverter Tabanlı Paralel Analog-Sayısal Dönüştürücü Tasarımı,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 6, no. 1, pp. 67–78, Mar. 2018, doi: 10.29109/HTTP-GUJSC-GAZI-EDU-TR.358045.
  • [8] N. Güler, “9-Seviyeli Paket E-Hücreli Eviriciler için Üstün Burulma Algoritması Tabanlı Kayan Kipli Kontrol Tasarımı,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 9, no. 1, pp. 57–70, Mar. 2021, doi: 10.29109/GUJSC.846704.
  • [9] E. Babaei, “A Cascade Multilevel Converter Topology With Reduced Number of Switches,” IEEE Trans Power Electron, vol. 23, no. 6, 2008, doi: 10.1109/TPEL.2008.2005192.
  • [10] M. Karakılıç, “A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven-Level Multilevel Inverter Topology,” International Journal of Circuit Theory and Applications, vol. 0, pp. 1–17, Feb. 2025, doi: 10.1002/CTA.4469.
  • [11] M. D. Siddique, M. Aslam Husain, A. Iqbal, S. Mekhilef, and A. Riyaz, “Single-Phase 9L Switched-Capacitor Boost Multilevel Inverter (9L-SC-BMLI) Topology,” IEEE Trans Ind Appl, vol. 59, no. 1, 2023, doi: 10.1109/TIA.2022.3208893.
  • [12] P. Omer and J. Kumar, “A Review on Reduced Switch Count Multilevel Inverter Topologies,” 2020, doi: 10.1109/ACCESS.2020.2969551.
  • [13] E. Babaei, M. F. Kangarlu, and M. Sabahi, “Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters,” 2013, doi: 10.1049/iet-pel.2013.0057.
  • [14] M. Farhadi Kangarlu and E. Babaei, “A Generalized Cascaded Multilevel Inverter Using Series Connection of Submultilevel Inverters,” IEEE Trans Power Electron, vol. 28, no. 2, p. 625, 2013, doi: 10.1109/TPEL.2012.2203339.
  • [15] R. S. Alishah, S. H. Hosseini, E. Babaei, and M. Sabahi, “Optimal Design of New Cascaded Switch-Ladder Multilevel Inverter Structure,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2072–2080, Mar. 2017, doi: 10.1109/TIE.2016.2627019.
  • [16] M. Saeedian, J. Adabi, and S. M. Hosseini, “Cascaded multilevel inverter based on symmetric-asymmetric DC sources with reduced number of components,” 2017, doi: 10.1049/iet-pel.2017.0039.
  • [17] E. Samadaei, A. Sheikholeslami, S. A. Gholamian, and J. Adabi, “A Square T-Type (ST-Type) Module for Asymmetrical Multilevel Inverters,” IEEE Trans Power Electron, vol. 33, no. 2, pp. 987–996, Feb. 2018, doi: 10.1109/TPEL.2017.2675381.
  • [18] J. C. Wu, H. L. Jou, and S. Y. Liou, “Asymmetric diode-clamped multi-level inverter based renewable power generation system,” International Journal of Electronics, vol. 108, no. 1, 2021, doi: 10.1080/00207217.2020.1756455.
  • [19] M. Hosseinzadeh, M. Sarebanzadeh, M. Rivera, S. Member, E. Babaei, and P. Wheeler, “A Reduced Single-Phase Switched-Diode Cascaded Multilevel Inverter,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, 2021, doi: 10.1109/JESTPE.2020.3010793.
  • [20] V. Krithika and C. Subramani, “A comprehensive review on choice of hybrid vehicles and power converters, control strategies for hybrid electric vehicles,” Int J Energy Res, vol. 42, no. 5, pp. 1789–1812, Apr. 2018, doi: 10.1002/ER.3952.
  • [21] M. Karakılıç and M. N. Almalı, “Design of Hybrid Switched Diode Multilevel Inverter Using Single DC Source,” Journal of Electrical Engineering and Technology, pp. 1–12, Feb. 2024, doi: 10.1007/S42835-024-01832-9/FIGURES/16.
  • [22] H. Hatas and M. N. Almali, “Design and control of a novel topology for multilevel inverters using high frequency link,” Electric Power Systems Research, vol. 221, 2023, doi: 10.1016/j.epsr.2023.109458.
  • [23] M. D. Siddique et al., “Single-Phase Boost Switched-Capacitor-Based Multilevel Inverter Topology With Reduced Switching Devices,” IEEE J Emerg Sel Top Power Electron, vol. 10, no. 4, 2022, doi: 10.1109/JESTPE.2021.3129063.
  • [24] R. S. Alishah, S. H. Hosseini, E. Babaei, and M. Sabahi, “Optimal Design of New Cascaded Switch-Ladder Multilevel Inverter Structure,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2072–2080, Mar. 2017, doi: 10.1109/TIE.2016.2627019.
  • [25] M. Zaid, A. R. Moonis, A. Sarwar, A. Iqbal, and M. Tayyab, “Seven-level single-source switched capacitor inverter with triple boosting capability and high reliability,” International Journal of Circuit Theory and Applications, vol. 52, no. 8, pp. 3844–3869, Aug. 2024, doi: 10.1002/CTA.3946.
  • [26] M. Daula Siddique, S. Mekhilef, M. Shah, A. Sarwar, A. Iqbal, and A. Memon, “A New Multilevel Inverter Topology With Reduce Switch Count,” 2019, doi: 10.1109/ACCESS.2019.2914430.
  • [27] W. Lin, J. Zeng, B. Fu, Z. Yan, and J. Liu, “Switched-capacitor Based Seven-level Boost Inverter with a Reduced Number of Devices,” CSEE Journal of Power and Energy Systems, vol. 10, no. 1, pp. 381–391, Jan. 2024, doi: 10.17775/CSEEJPES.2020.02620.
  • [28] S. Islam, M. Daula Siddique, M. R. Hussan, and A. Iqbal, “Reduced Voltage Stress and Spikes in Source Current of 7-Level Switched-Capacitor Based Multilevel Inverter,” IEEE Access, vol. 11, pp. 74722–74735, 2023, doi: 10.1109/ACCESS.2023.3297496.
  • [29] J. S. Mohamed Ali and V. Krishnasamy, “Compact Switched Capacitor Multilevel Inverter (CSCMLI) with Self-Voltage Balancing and Boosting Ability,” IEEE Trans Power Electron, vol. 34, no. 5, 2019, doi: 10.1109/TPEL.2018.2871378.
  • [30] M. Wasiq, M. D. Siddique, A. Sarwar, A. Iqbal, and S. Mekhilef, “A triple boost 13-level switched-capacitor based multi-level inverter topology for solar PV applications,” International Journal of Circuit Theory and Applications, vol. 50, no. 12, 2022, doi: 10.1002/cta.3391.
  • [31] S. Islam, D. Siddique, S. Mekhilef, M. Al-Hitmi, and A. Iqbal, “A Switched Capacitor-Based 13-Level Inverter With Reduced Switch Count,” IEEE Trans Ind Appl, vol. 58, no. 6, p. 7373, 2022, doi: 10.1109/TIA.2022.3191302.
  • [32] T. Roy, P. K. Sadhu, and A. Dasgupta, “Cross-Switched Multilevel Inverter Using Novel Switched Capacitor Converters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8521–8532, Nov. 2019, doi: 10.1109/TIE.2018.2889632.
  • [33] E. Samadaei, M. Kaviani, and K. Bertilsson, “A 13-Levels Module (K-Type) With Two DC Sources for Multilevel Inverters,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 66, no. 7, 2019, doi: 10.1109/TIE.2018.2868325.
  • [34] T. Roy and P. K. Sadhu, “A Step-Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters with Reduced Components,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 236–247, Jan. 2021, doi: 10.1109/TIE.2020.2965458.
  • [35] M. Sarebanzadeh et al., “A 15-Level Switched-Capacitor Multilevel Inverter Structure with Self-Balancing Capacitor,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, 2022, doi: 10.1109/TCSII.2021.3123115.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Güç Elektroniği
Bölüm Tasarım ve Teknoloji
Yazarlar

Murat Karakılıç 0000-0001-5323-2583

Hasan Hataş 0000-0003-4543-362X

Erken Görünüm Tarihi 16 Mayıs 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Şubat 2025
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Erken Görünüm

Kaynak Göster

APA Karakılıç, M., & Hataş, H. (2025). A Cost-Effective and High-Efficiency Novel 15-Level Hybrid MLI Topology for Renewable Energy Systems. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji1-1. https://doi.org/10.29109/gujsc.1631487

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526