Araştırma Makalesi
BibTex RIS Kaynak Göster

Production and characterization of PLA based graphene, black carrot waste and huntite-hydromagnetite reinforced biocomposites

Yıl 2025, Cilt: 15 Sayı: 2, 497 - 515, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1627648

Öz

In this study, biocomposite materials were produced by incorporating black carrot (KH), as a reinforcement material, graphene nanoplatelets (GNP) as additives, and huntite-hydromagnesite (HH) as mineral additives into a polylactic acid (PLA) matrix. A comprehensive investigation was conducted on the morphological, physical, mechanical, thermal, and flame retardant properties of the resulting biocomposites. The fabrication of the biocomposites was carried out through the implementation of a twin-screw extrusion method, subsequently followed by a process of hot press molding. Structural and morphological analysis were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) for characterization of the samples. Mechanical properties were evaluated by tensile, flexural, and impact strength tests. Thermal behavior was evaluated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bending temperature under load (HDT) tests. The flame retardant performance of the samples was measured using the UL-94 V combustion test. The experimental findings revealed that the incorporation of KH and HH enhanced the degree of crystallization in all variations of PLA biocomposites. The incorporation of HH enhanced the degradation temperature of the matrix, concurrently augmenting its thermal atability and residual amount. In the PLA/GNP/KH biocomposite, the addition of KH led to a slight decrease in thermal strength, but it also slowed down the rate of mass loss and increased the residue rate. In the PLA/GNP/KH biocomposite, the addition of HH increased the thermal deformation temperature to 55.5 ºC, representing an improvement of 2.97% compared to pure PLA. The finding of this study indicate that the incorporation of KH and HH additives led to a substantial enhancement in the thermal performance of PLA-based biocomposites.

Kaynakça

  • Akan, M. (2013). Production of flame retardent polyester composites and fibers. Master of Science. Middle East Technical University, Polymer Science and Technology Department, Ankara 67 s.
  • Alaybeyoğlu, E., Duran, K., & Körlü, A. (2022). Flammability behaviours of knitted fabrics containing pla, cotton, lyocell, chitosan fibers. Mugla Journal Science and Technology. https://doi.org/10.22531/muglajsci.1109115
  • Angin, N., Ertas, M., Caylak, S., & Fidan, M.S. (2023). Thermal and electrical behaviors of activated carbon-filled PLA/PP hybrid biocomposites. Sustainable Materials and Technologies, 37, e00655. https://doi.org/10.1016/j.susmat.2023.e00655
  • ASTM D570-22. (2022). Standard Test Method for Water Absorption of Plastics.
  • ASTM D792-20. (2020). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
  • ASTM D638-14. (2014). Standard Test Method for Tensile Properties of Plastics.
  • ASTM D790-17. (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
  • ASTM D648-18. (2018). Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position.
  • Atabek Savaş, L., Kaya Deniz, T., Tayfun, Ü., & Doğan, M. (2016). Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polymer Degradation and Stability, 135(4). https://doi.org/10.1016/j.polymdegradstab.2016.12.001
  • Atay, H.Y., & Çelik, E. (2010). Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant. Polymer Composites, 31(10), 1692–1700. https://doi.org/10.1002/pc.20959
  • Atay, H.Y., & Çelik, E., (2013). Mechanical properties of flame-retardant huntite and hydromagnesite-reinforced polymer composites. Polymer-Plastics Technology and Engineering, 52(2), 182–188. https://doi.org/10.1080/03602559.2012.735310
  • Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835–864. https://doi.org/10.1002/mabi.200400043
  • Begum, H.A., Tanni, T.R. & Shahid, M.A. (2021). Analysis of water absorption of different natural fibers. Journal of Textile Science and Technology, 7, 152–160. https://doi.org/10.4236/jtst.2021.74013
  • Benaniba, S., Djendel, M., Kessal, O., Abderraouf, B. A., Boubaaya, R., Dridi, M., & Driss, Z. (2023). Evaluation of mechanical properties of biocomposites treated with date palm fiber. Journal of Engineered Fibers and Fabrics, 18, 1–10.
  • Camlibel, N.O., Avinc, O., Arik, B., Yavas, A., & Yakin, I. (2019). The effects of huntite–hydromagnesite inclusion in acrylatebased polymer paste coating process on some textile functional performance properties of cotton fabric. Cellulose, 26, 1367–1381. https://doi.org/10.1007/s10570-018-1924-y
  • Chen, F., Liu, C.K., Cooke, P., Hicks, K.B., Zhang, J. (2008). Performance enhancement of poly (lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Industrial & Engineering Chemistry Research, 47(22). https://doi.org/10.1021/ie800930j
  • Chhoden, T., Aggarwal, P., Singh, A., & Kaur, S. (2024). Valorization of black carrot pomace for the development of anthocyanin rich bio functional edible films: implications on structural, morphological and thermal properties for a sustainable approach. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-024-02582-y
  • Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W., Hussein, M.Z., & Silverajah, V.S.G. (2012). Graphene nanoplatelets as novel reinforcement filler in poly(lactic acid)/epoxidized palm oil green nanocomposites: mechanical properties. International Journal of Molecular Sciences, 13, 10920-10934. https://doi.org/ 10.3390/ijms130910920
  • Crupi, V., Epasto, G., Napolitano, F., Palomba, G., Papa, I., & Russo, P. (2023). Green composites for maritime engineering. Journal of Marine Science and Engineering, 11(3), 599. https://doi.org/10.3390/jmse11030599
  • Çamlıbel, N. O., & Koç, E. (2021). flame retardant and antibacterial coating on cotton fabric by layer-by-layer assembly with huntite-hydromagnesite, ammonium polyphosphate, chitosan and aptes. Tekstil ve Konfeksiyon, 32(2). https://doi.org/10.32710/tekstilvekonfeksiyon.959838
  • Dike, A.S., (2020). Improvement of mechanical and physical performance of poly (lactic acid) biocomposites by application of surface silanization for huntite–hydromagnesite mineral. Journal of Thermoplastic Composite Materials, 35(5), 1–15. https://doi.org/10.1177/0892705720930776
  • Encalada, A. M.I., Basanta, M. F., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2016). Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect. Carbohydrate Polymers, 136, 1041–1051.
  • Erdem, A., & Dogan, M. (2020). Production and characterization of green flame-retardant poly (lactic acid) composites. Journal of Polymers and the Environment, 28, 2837–2850. https://doi.org/10.1007/s10924-020-01817-5
  • Ermeydan, M.A., Aykanat, O., & Altın,Y. (2024). Preparation and characterization of hybrid PLA biocomposites reinforced by wood and silane treated basalt fibers or compatibilized by Maleicanhydride-Grafted Polypropylene (MAPP). Polymer Composites, 1–14. https://doi.org/10.1002/pc.28442
  • Ersus, S., Yalçın Melikoğlu, A., & Cesur, S. (2020). Production of biocomposite packaging materials from fruit juice processing wastes. Journal of the Institute of Science and Technology, 10(1), 250–259. https://doi.org/10.21597/jist.528965
  • Faghihi Rezaei, V., Khonakdar, H.A., Goodarzi, V., Darbemamieh, G., & Otadi, M. (2022). Hydroxyapatite/TPU/PLA nanocomposites: Morphological, dynamic-mechanical, and thermal study. Green Processing and Synthesis, 11, 996–1012. https://doi.org/10.1515/gps-2022-0087
  • Gao, Y., Picot, O.T., Bilotti, E., & Peijs, T. (2016). Influence of filler size on the properties of poly(lactic acid) (pla)/graphene nanoplatelet (gnp) nanocomposites. European Polymer Journal, 86(1). https://doi.org/10.1016/j.eurpolymj.2016.10.045
  • Gavallas, P., Savvas, D., & Stefanou, G. (2023). Mechanical properties of graphene nanoplatelets containing random structural defects. Mechanics of Materials, 180(20), 104611. https://doi.org/ 10.1016/j.mechmat.2023.104611
  • Gonçalves, C., Pinto, A.M., Machado, A.V., Moreira, J.A., Gonçalves, I.C., & Magelhaes, F.D. (2016). Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polymer Composites, 39. https://doi.org/10.1002/pc.24050
  • Göçügenci, A., & Keskin, S.B. (2023). The effect of graphene nanoplatelet addition on the mechanical, durability and self-healing properties of engineered cementitious composites. MATEC Web conferences, 378, 02024. https://doi.org/10.1051/matecconf/202337802024
  • Güler, T. (2017). Mechanical, thermal and flammability properties of huntite hydromagnesite reinforced polyurethane elastomer. M.Sc. Thesis. Middle East Technical University Polymer Science and Technology Department, Ankara 120s.
  • Han, D., Wang, H., Lu,T., Cao, L., Dai,. Y., Cao, H., & Yu, X. (2022). Scalable manufacturing green core–shell structure flame retardant, with enhanced mechanical and flame retardant performances of polylactic acid. Journal of Polymers and the Enviroment, 30, 2516 – 2533. https://doi.org/10.1007/s10924-021-02358-1
  • Han, H., Hu, S., Feng, J., & Gao, H. (2011). Effect of stearic acid, zinc stearate coating on the properties of synthetic hydromagnesite. Applied Surface Science, 257, 2677–2682.
  • Hayatioğlu, N., Tekin, İ., & Ersus, S. (2024). Optimization of cellulose extraction parameters and production of nanocellulose from black carrot juice wastes. Journal of Tekirdag Agricultural Faculty, 21(2), 547–560. https://doi.org/10.33462/jotaf.1326627
  • Hollingbery, L.A., & Hull, T.R., (2010). The thermal decomposition of huntite and hydromagnesite. Thermochimica Acta, 509(1-2), 1–11. https://doi.org/10.1016/j.tca.2010.06.012
  • Hussain, W. A., & Rafiq, S. N. (2012). Mechanical properties of carrot fiber – epoxy composite. Baghdad Science Journal, 9(2), 335–340.
  • Kahraman, M. (2022). Polipropilen bileşiklerinin mekanik, fiziksel ve alev geciktirici özelliklerinin mineraller ve köpüren alev geciktiricilerin sinerjistik kombinasyonunun kullanılarak incelenmesi. Doktora Tezi. İstanbul Teknik Üniversitesi Polimer Bilim ve Teknolojisi Anabilim Dalı, İstanbul.
  • Kangal, O., & Güney, A. (2006). A new industrial mineral: Huntite and its recovery. Minerals Engineering, 19, 376–378.
  • Kim, H., & Lee, S. (2019). Characterization of electrical heating textile coated by Graphene Nanoplatelets/PVDF-HFP composite with various high graphene nanoplatelet contents. Polymers, 11(5), 928. https://doi.org/10.3390/polym11050928
  • Kim, I., & Jeong, Y.G. (2010). Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymers Science Part B Polymer Physics, 48(8), 850 – 858. https://doi.org/10.1002/polb.21956
  • Kuenzel, C., Zhang, F., Ferrandiz-Mas, V., Cheeseman, C.R., & Gartner, E.M. (2018). The mechanism of hydration of MgO-hydromagnesite blends. Cement and Concrete Research, 103, 123–129.
  • Kumar, S., & Saha, A. (2024). Utilization of coconut shell biomass residue to develop sustainable biocomposites and characterize the physical, mechanical, thermal and water absorption properties. Biomass Conversion and Biorefinery, 14, 12815–12831. https://doi.org/10.1007/s13399-022-03293-4
  • Kumarage, S.H., Godakumbura, P.I., & Prashantha, M.A.B. (2023). A Novel banana fiber reinforced green composite from maleated castor oil and linseed oil. Sustainable Chemical Engineering, 5(1), 71–88. https://doi.org/10.37256/sce.5120243616
  • Macedo, J. N., Rosa, D. S., Garcia, M. P., Scuracchio, C. H., & Felisberti, M. I., (2015, October). Effect of nanoclay on viscoelasticity properties behaviour of PLA/MMT composites. XI Simposio Argentino de Polimeros. SAP
  • Mann, G.S., Singh, L.P., Kumar, P., & Singh, S. (2018). Green composites: A review of processing Technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(3), 089270571881635. https://doi.org/10.1177/0892705718816354
  • Merino, D., Paul, U.C., & Athanassiou, A. (2024). Blending of polysaccharide-based carrot pomace with vegetable proteins for biocomposites with optimized performance for food packaging applications. Food Hydrocolloids, 152, 109903. https://doi.org/10.1016/j.foodhyd.2024.109903
  • Miller, K., Reichert, C.L., Loeffler, M., & Schmid, M. (2024). Effect of particle size on the physical properties of PLA/Potato peel composites. Compounds, 4, 119–140. https://doi.org/10.3390/compounds4010006
  • Mincheva, R., Guemiza, H., Hidan, C., Moins, S., Coulembier, O. Dubois, & P., Laoutid, F. (2019). Development of ınherently flame—retardant phosphorylated pla by combination of ringopening polymerization and reactive extrusion. Materials, 13, 13. https://doi.org/10.3390/ma13010013
  • Mohd, S.H., Rosdi, N.A.M., Bakar, M.B.A., Mohammed, M., Akil, H.M., & Thirmirzir, M.Z.A. (2022). Cellulose nano crystal/graphene nano platelets hybrid nanofillers reinforced polylactic acid biocomposites: mechanical and morphological properties. 4th International Conference on Tropical Resources and Sustainable Sciences, 1102, 012005. https://doi.org/10.1088/1755-1315/1102/1/012005
  • Mortalo, C., Russo, P., Miorin, E., Zin, V., Paradisi, E., & Leonelli, C. (2023). Extruded composite films based on polylactic acid and sodium alginate. Polymer, 282(23), 126162. https://doi.org/10.1016/j.polymer.2023.126162
  • Nagarajan, V., Zhang, K., Misra, M., & Mohanty, A.K. (2015). Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: Influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces, 7, 11203−11214. https://doi.org/10.1021/acsami.5b01145
  • Nyambo, C., Mohanty, A.K., & Misra, M. (2011). Effect of maleated compatibilizer on performance of PLA/wheat straw-based green composites. Macromoleculer Material Engineering, 296, 710−718. https://doi.org/10.1002/mame.201000403
  • Panchal, M., Raghavendra, G., Reddy, A.R., Omprakash, M., & Ohja, S. (2021). Experimental investigation of mechanical and erosion behavior of eggshell nanoparticulate epoxy biocomposite. Polymers and Polymer Composites, 29(7), 897 – 908. https://doi.org/10.1177/0967391120943454
  • Pinto, A.M., Gonçalves, C., Gonçalves, I.C., & Magalhaes, F.D. (2015, February). Effect of biodegradation on PLA/graphene-nanoplatelets composites mechanical properties and biocompatibility. nanoPT 2015 Nanoscience and Nanotechnology International Conference, Porto.
  • Rahmat, N.F., Sajab, M.S., Afdzaluddin, A.M., Chia, C.H., & Ding, G. (2024). Enhancing the electrochemical properties of biopolymer composites using starch-graphene nanoplatelets. Polymer Composites, 1–11. https://doi.org/10.1002/pc.28809
  • Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Homogenous and transparent nanocellulosic films from carrot. Industrial Crops & Products, 118, 53–64. https://doi.org/10.1016/j.indcrop.2018.02.076
  • Ramesh, P., Prasad, B.D., & Narayana, K.L. (2020). Effect of MMT clay on mechanical, thermal and barrier properties of treated aloevera fiber/ PLA-hybrid biocomposites. Silicon, 12, 1751–1760. https://doi.org/10.1007/s12633-019-00275-6
  • Righetti, M.C., Cinelli, P., Mallegni, N., Massa, C.A., Aliotta, L., & Lazzeri, A. (2019a). Thermal, mechanical, viscoelastic and morphological properties of poly(lactic acid) based biocomposites with potato pulp powder treated with waxes. Materials, 12, 990. https://doi.org/10.3390/ma12060990
  • Righetti, M.C., Cinelli, P., Mallegni, N., Massa, C.A., Bronco, S., Stäbler, A., & Lazzeri, A. (2019b). Thermal, mechanical, and rheological properties of biocomposites made of poly (lactic acid) and potato pulp powder. International Journal of Molecular Science, 20, 675. https://doi.org/10.3390/ijms20030675
  • Santos, L.G.S., Paz, S.P.A., Cunhaa, E.J.S., & Souza, J.A.S. (2020). Non-halogenated flame-retardant additive from Amazon mineral waste. Journal of Materials Research and Technology, 9(5), 11531–11544.
  • Savaş, L.A., Arslan, C., Hacioglu, F., & Dogan, M. (2018). Effect of reactive and nonreactive surface modifications and compatibilizer use on mechanical and flame-retardant properties of linear low-density polyethylene filled with huntite and hydromagnesite mineral. Journal of Thermal Analysis and Calorimetry, 134, 1657–1666. https://doi.org/10.1007/s10973-018-7378-5
  • Seki, Y., Sever, K., Sarikanat, M., Sakarya, A., & Elik, E. (2013). Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Composites: Part B, 45, 1534–1540.
  • Siqueira, G., Oksman, K., Tadokoro, S. K., & Mathew, A. P. (2016). Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 123, 49–56.
  • Sogut, E., & Cakmak, H. (2020). Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan based films. Food Hydrocolloids, 106, 105861. https://doi.org/10.1016/j.foodhyd.2020.105861
  • Sucheta, Misra, N.N., & Yadav, S.K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102, 105592. https://doi.org/10.1016/j.foodhyd.2019.105592
  • Sun, Z., Zhang, L., Liang, D., Xiao, W., & Lin, J. (2017). Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. International Journal of Polymer Science, 8. https://doi.org/10.1155/2017/2178329
  • Şen, F., Madakbaş¸ S., & Kahraman, M.V. (2014). Preparation and characterization of Polyaniline/Turkish huntite-hydromagnesite composites. Polymer Composites, 35, 456–460. https://doi.org/10.1002/pc.22681
  • Tawiah, B., Yu, B., Yuen, R. K. K., Hu, Y., Wei, R., Xin, J. H., & Fei, B., (2019). Highly efficient flame retardant and smoke suppression mechanism of boron modified Graphene oxide/Poly (Lactic acid) nanocomposites. Carbon, 150(3), 8–20. https://doi.org/10.1016/j.carbon.2019.05.002
  • Torres., F.G., Rodriguez, S., & Saavedra, A.C. (2019). Green composites materials from biopolymers reinforced with agroforestry waste. Journal of Polymers and the Enviroment, 27, 2651–2673. https://doi.org/10.1007/s10924-019-01561-5
  • Ţucureanu, V., Matei, A., & Avram, A.M. (2016). FTIR spectroscopy for carbon family study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013
  • Türk, T., Sökmen, İ., & Kangal, M.O. (2023, December). Enrichment of huntite ore based on its characterization. 19th Balkan Mineral Processing Congress.
  • UL 94 (2014). Tests for Flammability of Plastic Materials for Partscin Devices and Appliances.
  • Yang, Y., Wang, D.Y., Haurie, L., Liu, Z., & Zhang, L. (2021). Combination of corn pith fiber and biobased flame retardant: a novel method toward flame retardancy, thermal stability, and mechanical properties of polylactide. Polymers, 13, 1562. https://doi.org/10.3390/polym13101562
  • Yenier, Z., Şen, İ., Sever, K., Seki, Y., Sarıkanat, M. (2015). Grafen takviyeli biyokompozitlerin mekanik ve termal özelliklerinin incelenmesi. XIX. Ulusal Mekanik Kongresi, (s. 1055-1058). Trabzon: Karadeniz Teknik Üniversitesi, Ağustos 24-28.
  • Yüksel Sarıoğlu, H., & Dirim, S.N. (2023). The effect of the fluidized bed agglomeration process on the powder properties of black carrot juice powders. Journal of Food Process Engineering, 46(12). https://doi.org/10.1111/jfpe.14460
  • Zakut, M. (2012). Effects of huntite/hydromagnesite on capacity of flame retardancy, mechanical and physical properties of polypropylene. M.Sc. Thesis. Istanbul Technical University Graduate School Of Science Engineering And Technology Polymer Science and Technology Programme, İstanbul 132s.
  • Zhu, T., Guo, J., Fei, B., Feng, Z., Gu, X., Li, H., Sun, J., & Zhang, S. (2020). Preparation of methacrylic acid modified microcrystalline cellulose and their applications in polylactic acid: flame retardancy, mechanical properties, thermal stability and crystallization behavior. Cellulose, 27, 2309–2323. https://doi.org/10.1007/s10570-019-02931-x.
  • Zorah, M., Mudhafar, M., Majhool, A.A., Abbood, S.F., Alsailawi, H.A., Karhib, M.M., & Mustapa, I.R. (2023). Review of the green composite: ımportance of biopolymers, uses and challenges. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 111(1), 194–216. https://doi.org/10.37934/arfmts.111.1.194216.

PLA esaslı grafen, kara havuç atığı ve huntit-hidromanyezit takviyeli biyokompozitlerin üretimi ve karakterizasyonu

Yıl 2025, Cilt: 15 Sayı: 2, 497 - 515, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1627648

Öz

Bu çalışmada; polilaktik asit (PLA) matrisi içerisinde takviye malzemesi olarak kara havuç (KH), katkı maddesi olarak grafen nanoplateletler (GNP) ve mineral katkı olarak huntit-hidromanyezit (HH) eklenerek biyokompozit malzemeler üretilmiştir. Üretilen biyokompozitlerin morfolojik, fiziksel, mekanik, termal ve alev geciktirici özellikleri kapsamlı bir şekilde incelenmiştir. Biyokompozit üretimi için çift vidalı ekstrüzyon yöntemi kullanılmış, ardından sıcak pres kalıplama ile numuneler şekillendirilmiştir. Numunelerin karakterizasyonunda fourier dönüşümlü kızılötesi spektroskopisi (FTIR), taramalı elektron mikroskobu (SEM) ile yapısal ve morfolojik analizler gerçekleştirilmiştir. Mekanik özellikler çekme, eğilme ve darbe dayanımı testleriyle, termal davranış ise diferansiyel taramalı kalorimetre (DSC), termogravimetrik analiz (TGA), yük altında eğilme sıcaklığı (HDT) testleriyle değerlendirilmiştir. Alev geciktirici performans UL-94 V yanma testi ile ölçülmüştür. Sonuçlara göre, KH ve HH katkıları PLA biyokompozitlerin kristalizasyon derecesini tüm varyasyonlarda arttırmıştır. HH ilavesi, matrisin bozunma sıcaklığını iyileştirirken termal kararlılık ve kalıntı miktarını da yükseltmiştir. PLA/GNP/KH biyokompozitinde KH katkısı, ısıl dayanımı hafifçe düşürmesine rağmen kütle kaybı hızını yavaşlatmış ve kalıntı oranını artırmıştır. PLA/GNP/KH/HH biyokompozitinde ise HH ilavesiyle termal deformasyon sıcaklığı 55,5 °C’ye yükselerek saf PLA’ya kıyasla %2,97’lik iyileşme sağlanmıştır. Elde edilen veriler, KH ve HH katkılarının PLA tabanlı biyokompozitin termal performansını önemli ölçüde optimize ettiğini ortaya koymuştur.

Kaynakça

  • Akan, M. (2013). Production of flame retardent polyester composites and fibers. Master of Science. Middle East Technical University, Polymer Science and Technology Department, Ankara 67 s.
  • Alaybeyoğlu, E., Duran, K., & Körlü, A. (2022). Flammability behaviours of knitted fabrics containing pla, cotton, lyocell, chitosan fibers. Mugla Journal Science and Technology. https://doi.org/10.22531/muglajsci.1109115
  • Angin, N., Ertas, M., Caylak, S., & Fidan, M.S. (2023). Thermal and electrical behaviors of activated carbon-filled PLA/PP hybrid biocomposites. Sustainable Materials and Technologies, 37, e00655. https://doi.org/10.1016/j.susmat.2023.e00655
  • ASTM D570-22. (2022). Standard Test Method for Water Absorption of Plastics.
  • ASTM D792-20. (2020). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
  • ASTM D638-14. (2014). Standard Test Method for Tensile Properties of Plastics.
  • ASTM D790-17. (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
  • ASTM D648-18. (2018). Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position.
  • Atabek Savaş, L., Kaya Deniz, T., Tayfun, Ü., & Doğan, M. (2016). Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polymer Degradation and Stability, 135(4). https://doi.org/10.1016/j.polymdegradstab.2016.12.001
  • Atay, H.Y., & Çelik, E. (2010). Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant. Polymer Composites, 31(10), 1692–1700. https://doi.org/10.1002/pc.20959
  • Atay, H.Y., & Çelik, E., (2013). Mechanical properties of flame-retardant huntite and hydromagnesite-reinforced polymer composites. Polymer-Plastics Technology and Engineering, 52(2), 182–188. https://doi.org/10.1080/03602559.2012.735310
  • Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835–864. https://doi.org/10.1002/mabi.200400043
  • Begum, H.A., Tanni, T.R. & Shahid, M.A. (2021). Analysis of water absorption of different natural fibers. Journal of Textile Science and Technology, 7, 152–160. https://doi.org/10.4236/jtst.2021.74013
  • Benaniba, S., Djendel, M., Kessal, O., Abderraouf, B. A., Boubaaya, R., Dridi, M., & Driss, Z. (2023). Evaluation of mechanical properties of biocomposites treated with date palm fiber. Journal of Engineered Fibers and Fabrics, 18, 1–10.
  • Camlibel, N.O., Avinc, O., Arik, B., Yavas, A., & Yakin, I. (2019). The effects of huntite–hydromagnesite inclusion in acrylatebased polymer paste coating process on some textile functional performance properties of cotton fabric. Cellulose, 26, 1367–1381. https://doi.org/10.1007/s10570-018-1924-y
  • Chen, F., Liu, C.K., Cooke, P., Hicks, K.B., Zhang, J. (2008). Performance enhancement of poly (lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Industrial & Engineering Chemistry Research, 47(22). https://doi.org/10.1021/ie800930j
  • Chhoden, T., Aggarwal, P., Singh, A., & Kaur, S. (2024). Valorization of black carrot pomace for the development of anthocyanin rich bio functional edible films: implications on structural, morphological and thermal properties for a sustainable approach. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-024-02582-y
  • Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W., Hussein, M.Z., & Silverajah, V.S.G. (2012). Graphene nanoplatelets as novel reinforcement filler in poly(lactic acid)/epoxidized palm oil green nanocomposites: mechanical properties. International Journal of Molecular Sciences, 13, 10920-10934. https://doi.org/ 10.3390/ijms130910920
  • Crupi, V., Epasto, G., Napolitano, F., Palomba, G., Papa, I., & Russo, P. (2023). Green composites for maritime engineering. Journal of Marine Science and Engineering, 11(3), 599. https://doi.org/10.3390/jmse11030599
  • Çamlıbel, N. O., & Koç, E. (2021). flame retardant and antibacterial coating on cotton fabric by layer-by-layer assembly with huntite-hydromagnesite, ammonium polyphosphate, chitosan and aptes. Tekstil ve Konfeksiyon, 32(2). https://doi.org/10.32710/tekstilvekonfeksiyon.959838
  • Dike, A.S., (2020). Improvement of mechanical and physical performance of poly (lactic acid) biocomposites by application of surface silanization for huntite–hydromagnesite mineral. Journal of Thermoplastic Composite Materials, 35(5), 1–15. https://doi.org/10.1177/0892705720930776
  • Encalada, A. M.I., Basanta, M. F., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2016). Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect. Carbohydrate Polymers, 136, 1041–1051.
  • Erdem, A., & Dogan, M. (2020). Production and characterization of green flame-retardant poly (lactic acid) composites. Journal of Polymers and the Environment, 28, 2837–2850. https://doi.org/10.1007/s10924-020-01817-5
  • Ermeydan, M.A., Aykanat, O., & Altın,Y. (2024). Preparation and characterization of hybrid PLA biocomposites reinforced by wood and silane treated basalt fibers or compatibilized by Maleicanhydride-Grafted Polypropylene (MAPP). Polymer Composites, 1–14. https://doi.org/10.1002/pc.28442
  • Ersus, S., Yalçın Melikoğlu, A., & Cesur, S. (2020). Production of biocomposite packaging materials from fruit juice processing wastes. Journal of the Institute of Science and Technology, 10(1), 250–259. https://doi.org/10.21597/jist.528965
  • Faghihi Rezaei, V., Khonakdar, H.A., Goodarzi, V., Darbemamieh, G., & Otadi, M. (2022). Hydroxyapatite/TPU/PLA nanocomposites: Morphological, dynamic-mechanical, and thermal study. Green Processing and Synthesis, 11, 996–1012. https://doi.org/10.1515/gps-2022-0087
  • Gao, Y., Picot, O.T., Bilotti, E., & Peijs, T. (2016). Influence of filler size on the properties of poly(lactic acid) (pla)/graphene nanoplatelet (gnp) nanocomposites. European Polymer Journal, 86(1). https://doi.org/10.1016/j.eurpolymj.2016.10.045
  • Gavallas, P., Savvas, D., & Stefanou, G. (2023). Mechanical properties of graphene nanoplatelets containing random structural defects. Mechanics of Materials, 180(20), 104611. https://doi.org/ 10.1016/j.mechmat.2023.104611
  • Gonçalves, C., Pinto, A.M., Machado, A.V., Moreira, J.A., Gonçalves, I.C., & Magelhaes, F.D. (2016). Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polymer Composites, 39. https://doi.org/10.1002/pc.24050
  • Göçügenci, A., & Keskin, S.B. (2023). The effect of graphene nanoplatelet addition on the mechanical, durability and self-healing properties of engineered cementitious composites. MATEC Web conferences, 378, 02024. https://doi.org/10.1051/matecconf/202337802024
  • Güler, T. (2017). Mechanical, thermal and flammability properties of huntite hydromagnesite reinforced polyurethane elastomer. M.Sc. Thesis. Middle East Technical University Polymer Science and Technology Department, Ankara 120s.
  • Han, D., Wang, H., Lu,T., Cao, L., Dai,. Y., Cao, H., & Yu, X. (2022). Scalable manufacturing green core–shell structure flame retardant, with enhanced mechanical and flame retardant performances of polylactic acid. Journal of Polymers and the Enviroment, 30, 2516 – 2533. https://doi.org/10.1007/s10924-021-02358-1
  • Han, H., Hu, S., Feng, J., & Gao, H. (2011). Effect of stearic acid, zinc stearate coating on the properties of synthetic hydromagnesite. Applied Surface Science, 257, 2677–2682.
  • Hayatioğlu, N., Tekin, İ., & Ersus, S. (2024). Optimization of cellulose extraction parameters and production of nanocellulose from black carrot juice wastes. Journal of Tekirdag Agricultural Faculty, 21(2), 547–560. https://doi.org/10.33462/jotaf.1326627
  • Hollingbery, L.A., & Hull, T.R., (2010). The thermal decomposition of huntite and hydromagnesite. Thermochimica Acta, 509(1-2), 1–11. https://doi.org/10.1016/j.tca.2010.06.012
  • Hussain, W. A., & Rafiq, S. N. (2012). Mechanical properties of carrot fiber – epoxy composite. Baghdad Science Journal, 9(2), 335–340.
  • Kahraman, M. (2022). Polipropilen bileşiklerinin mekanik, fiziksel ve alev geciktirici özelliklerinin mineraller ve köpüren alev geciktiricilerin sinerjistik kombinasyonunun kullanılarak incelenmesi. Doktora Tezi. İstanbul Teknik Üniversitesi Polimer Bilim ve Teknolojisi Anabilim Dalı, İstanbul.
  • Kangal, O., & Güney, A. (2006). A new industrial mineral: Huntite and its recovery. Minerals Engineering, 19, 376–378.
  • Kim, H., & Lee, S. (2019). Characterization of electrical heating textile coated by Graphene Nanoplatelets/PVDF-HFP composite with various high graphene nanoplatelet contents. Polymers, 11(5), 928. https://doi.org/10.3390/polym11050928
  • Kim, I., & Jeong, Y.G. (2010). Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymers Science Part B Polymer Physics, 48(8), 850 – 858. https://doi.org/10.1002/polb.21956
  • Kuenzel, C., Zhang, F., Ferrandiz-Mas, V., Cheeseman, C.R., & Gartner, E.M. (2018). The mechanism of hydration of MgO-hydromagnesite blends. Cement and Concrete Research, 103, 123–129.
  • Kumar, S., & Saha, A. (2024). Utilization of coconut shell biomass residue to develop sustainable biocomposites and characterize the physical, mechanical, thermal and water absorption properties. Biomass Conversion and Biorefinery, 14, 12815–12831. https://doi.org/10.1007/s13399-022-03293-4
  • Kumarage, S.H., Godakumbura, P.I., & Prashantha, M.A.B. (2023). A Novel banana fiber reinforced green composite from maleated castor oil and linseed oil. Sustainable Chemical Engineering, 5(1), 71–88. https://doi.org/10.37256/sce.5120243616
  • Macedo, J. N., Rosa, D. S., Garcia, M. P., Scuracchio, C. H., & Felisberti, M. I., (2015, October). Effect of nanoclay on viscoelasticity properties behaviour of PLA/MMT composites. XI Simposio Argentino de Polimeros. SAP
  • Mann, G.S., Singh, L.P., Kumar, P., & Singh, S. (2018). Green composites: A review of processing Technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(3), 089270571881635. https://doi.org/10.1177/0892705718816354
  • Merino, D., Paul, U.C., & Athanassiou, A. (2024). Blending of polysaccharide-based carrot pomace with vegetable proteins for biocomposites with optimized performance for food packaging applications. Food Hydrocolloids, 152, 109903. https://doi.org/10.1016/j.foodhyd.2024.109903
  • Miller, K., Reichert, C.L., Loeffler, M., & Schmid, M. (2024). Effect of particle size on the physical properties of PLA/Potato peel composites. Compounds, 4, 119–140. https://doi.org/10.3390/compounds4010006
  • Mincheva, R., Guemiza, H., Hidan, C., Moins, S., Coulembier, O. Dubois, & P., Laoutid, F. (2019). Development of ınherently flame—retardant phosphorylated pla by combination of ringopening polymerization and reactive extrusion. Materials, 13, 13. https://doi.org/10.3390/ma13010013
  • Mohd, S.H., Rosdi, N.A.M., Bakar, M.B.A., Mohammed, M., Akil, H.M., & Thirmirzir, M.Z.A. (2022). Cellulose nano crystal/graphene nano platelets hybrid nanofillers reinforced polylactic acid biocomposites: mechanical and morphological properties. 4th International Conference on Tropical Resources and Sustainable Sciences, 1102, 012005. https://doi.org/10.1088/1755-1315/1102/1/012005
  • Mortalo, C., Russo, P., Miorin, E., Zin, V., Paradisi, E., & Leonelli, C. (2023). Extruded composite films based on polylactic acid and sodium alginate. Polymer, 282(23), 126162. https://doi.org/10.1016/j.polymer.2023.126162
  • Nagarajan, V., Zhang, K., Misra, M., & Mohanty, A.K. (2015). Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: Influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces, 7, 11203−11214. https://doi.org/10.1021/acsami.5b01145
  • Nyambo, C., Mohanty, A.K., & Misra, M. (2011). Effect of maleated compatibilizer on performance of PLA/wheat straw-based green composites. Macromoleculer Material Engineering, 296, 710−718. https://doi.org/10.1002/mame.201000403
  • Panchal, M., Raghavendra, G., Reddy, A.R., Omprakash, M., & Ohja, S. (2021). Experimental investigation of mechanical and erosion behavior of eggshell nanoparticulate epoxy biocomposite. Polymers and Polymer Composites, 29(7), 897 – 908. https://doi.org/10.1177/0967391120943454
  • Pinto, A.M., Gonçalves, C., Gonçalves, I.C., & Magalhaes, F.D. (2015, February). Effect of biodegradation on PLA/graphene-nanoplatelets composites mechanical properties and biocompatibility. nanoPT 2015 Nanoscience and Nanotechnology International Conference, Porto.
  • Rahmat, N.F., Sajab, M.S., Afdzaluddin, A.M., Chia, C.H., & Ding, G. (2024). Enhancing the electrochemical properties of biopolymer composites using starch-graphene nanoplatelets. Polymer Composites, 1–11. https://doi.org/10.1002/pc.28809
  • Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Homogenous and transparent nanocellulosic films from carrot. Industrial Crops & Products, 118, 53–64. https://doi.org/10.1016/j.indcrop.2018.02.076
  • Ramesh, P., Prasad, B.D., & Narayana, K.L. (2020). Effect of MMT clay on mechanical, thermal and barrier properties of treated aloevera fiber/ PLA-hybrid biocomposites. Silicon, 12, 1751–1760. https://doi.org/10.1007/s12633-019-00275-6
  • Righetti, M.C., Cinelli, P., Mallegni, N., Massa, C.A., Aliotta, L., & Lazzeri, A. (2019a). Thermal, mechanical, viscoelastic and morphological properties of poly(lactic acid) based biocomposites with potato pulp powder treated with waxes. Materials, 12, 990. https://doi.org/10.3390/ma12060990
  • Righetti, M.C., Cinelli, P., Mallegni, N., Massa, C.A., Bronco, S., Stäbler, A., & Lazzeri, A. (2019b). Thermal, mechanical, and rheological properties of biocomposites made of poly (lactic acid) and potato pulp powder. International Journal of Molecular Science, 20, 675. https://doi.org/10.3390/ijms20030675
  • Santos, L.G.S., Paz, S.P.A., Cunhaa, E.J.S., & Souza, J.A.S. (2020). Non-halogenated flame-retardant additive from Amazon mineral waste. Journal of Materials Research and Technology, 9(5), 11531–11544.
  • Savaş, L.A., Arslan, C., Hacioglu, F., & Dogan, M. (2018). Effect of reactive and nonreactive surface modifications and compatibilizer use on mechanical and flame-retardant properties of linear low-density polyethylene filled with huntite and hydromagnesite mineral. Journal of Thermal Analysis and Calorimetry, 134, 1657–1666. https://doi.org/10.1007/s10973-018-7378-5
  • Seki, Y., Sever, K., Sarikanat, M., Sakarya, A., & Elik, E. (2013). Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Composites: Part B, 45, 1534–1540.
  • Siqueira, G., Oksman, K., Tadokoro, S. K., & Mathew, A. P. (2016). Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 123, 49–56.
  • Sogut, E., & Cakmak, H. (2020). Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan based films. Food Hydrocolloids, 106, 105861. https://doi.org/10.1016/j.foodhyd.2020.105861
  • Sucheta, Misra, N.N., & Yadav, S.K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102, 105592. https://doi.org/10.1016/j.foodhyd.2019.105592
  • Sun, Z., Zhang, L., Liang, D., Xiao, W., & Lin, J. (2017). Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. International Journal of Polymer Science, 8. https://doi.org/10.1155/2017/2178329
  • Şen, F., Madakbaş¸ S., & Kahraman, M.V. (2014). Preparation and characterization of Polyaniline/Turkish huntite-hydromagnesite composites. Polymer Composites, 35, 456–460. https://doi.org/10.1002/pc.22681
  • Tawiah, B., Yu, B., Yuen, R. K. K., Hu, Y., Wei, R., Xin, J. H., & Fei, B., (2019). Highly efficient flame retardant and smoke suppression mechanism of boron modified Graphene oxide/Poly (Lactic acid) nanocomposites. Carbon, 150(3), 8–20. https://doi.org/10.1016/j.carbon.2019.05.002
  • Torres., F.G., Rodriguez, S., & Saavedra, A.C. (2019). Green composites materials from biopolymers reinforced with agroforestry waste. Journal of Polymers and the Enviroment, 27, 2651–2673. https://doi.org/10.1007/s10924-019-01561-5
  • Ţucureanu, V., Matei, A., & Avram, A.M. (2016). FTIR spectroscopy for carbon family study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013
  • Türk, T., Sökmen, İ., & Kangal, M.O. (2023, December). Enrichment of huntite ore based on its characterization. 19th Balkan Mineral Processing Congress.
  • UL 94 (2014). Tests for Flammability of Plastic Materials for Partscin Devices and Appliances.
  • Yang, Y., Wang, D.Y., Haurie, L., Liu, Z., & Zhang, L. (2021). Combination of corn pith fiber and biobased flame retardant: a novel method toward flame retardancy, thermal stability, and mechanical properties of polylactide. Polymers, 13, 1562. https://doi.org/10.3390/polym13101562
  • Yenier, Z., Şen, İ., Sever, K., Seki, Y., Sarıkanat, M. (2015). Grafen takviyeli biyokompozitlerin mekanik ve termal özelliklerinin incelenmesi. XIX. Ulusal Mekanik Kongresi, (s. 1055-1058). Trabzon: Karadeniz Teknik Üniversitesi, Ağustos 24-28.
  • Yüksel Sarıoğlu, H., & Dirim, S.N. (2023). The effect of the fluidized bed agglomeration process on the powder properties of black carrot juice powders. Journal of Food Process Engineering, 46(12). https://doi.org/10.1111/jfpe.14460
  • Zakut, M. (2012). Effects of huntite/hydromagnesite on capacity of flame retardancy, mechanical and physical properties of polypropylene. M.Sc. Thesis. Istanbul Technical University Graduate School Of Science Engineering And Technology Polymer Science and Technology Programme, İstanbul 132s.
  • Zhu, T., Guo, J., Fei, B., Feng, Z., Gu, X., Li, H., Sun, J., & Zhang, S. (2020). Preparation of methacrylic acid modified microcrystalline cellulose and their applications in polylactic acid: flame retardancy, mechanical properties, thermal stability and crystallization behavior. Cellulose, 27, 2309–2323. https://doi.org/10.1007/s10570-019-02931-x.
  • Zorah, M., Mudhafar, M., Majhool, A.A., Abbood, S.F., Alsailawi, H.A., Karhib, M.M., & Mustapa, I.R. (2023). Review of the green composite: ımportance of biopolymers, uses and challenges. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 111(1), 194–216. https://doi.org/10.37934/arfmts.111.1.194216.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ahşap Esaslı Kompozitler
Bölüm Makaleler
Yazarlar

Ayşenur Sönmez 0000-0003-1735-7252

Şeyma Duman 0000-0002-6685-5656

Muhammed Said Fidan 0000-0001-6562-6299

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 27 Ocak 2025
Kabul Tarihi 5 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Sönmez, A., Duman, Ş., & Fidan, M. S. (2025). PLA esaslı grafen, kara havuç atığı ve huntit-hidromanyezit takviyeli biyokompozitlerin üretimi ve karakterizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(2), 497-515. https://doi.org/10.17714/gumusfenbil.1627648