Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling quality changes in heat-processed orange juice: a comparative study of artificial neural network and multiple linear regression approaches

Yıl 2025, Cilt: 29 Sayı: 2, 237 - 254, 16.06.2025
https://doi.org/10.29050/harranziraat.1572534

Öz

The purpose of the study was to assess the prediction ability of multiple linear regression (MLR) and artificial neural network (ANN) models for the browning index, total carotenoid content, 5-hydroxymethylfurfural (HMF) and ascorbic acid of orange juice during storage after heat processing. For ANN models, the effect of neuron number of the hidden layer, epoch number, training algorithms and transfer functions are investigated using the trial-error method for selecting best design ANN models. The different methods (stepwise and enter) in multiple linear regression models were performed for detecting impact of independent variables on dependent variables. The performance of ANN and MLR models was determined through unseen data by means of statistical analysis. Regarding performance indices of ANN models for test data, overall R and R2 were recorded as follows: 0.92 and 0.84 (browning index), 0.99 and 0.98 (HMF), 0.92 and 0.86 (ascorbic acid), 0.97 and 0.94 (total carotenoid content), respectively. R and R2 values of MLR models for test data were 0.79 and 0.68 (browning index), 0.94 and 0.88 (HMF), 0.92 and 0.85 (ascorbic acid), 0.93 and 0.90 (total carotenoid content), respectively. Both models provided accurate predictions. However, the superior predictive power of ANN models is that they can learn directly from examples without calculating the parameters using statistical techniques. The results revealed that ANN models showed greater potential with high R and R2 value, and the lowest error values when compared with the MLR model, but both ANN and MLR had almost same performance for prediction of ascorbic acid.

Proje Numarası

ZF2012YL3

Kaynakça

  • Agcam, E., Akyildiz, A., & Evrendilek, G. A. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143, 354–361. http://doi.org/10.1016/j.foodchem.2013.07.115
  • Agcam, E., Akyildiz, A., & Akdemir Evrendilek, G. (2016). A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food and Bioproducts Processing, 99, 90–98. https://doi.org/10.1016/j.fbp.2016.04.006
  • Akyıldız A., Mertoglu TS., & Ağçam, E. (2021). Kinetic study for ascorbic acid degradation. hydroxymethylfurfural and furfural formations in orange juice. Journal of Food Composition and Analysis. 102. 103996. https://doi.org/10.1016/j.jfca.2021.103996
  • Agha, S. R., & Alnahhal, M. J. (2012). Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design. Applied Ergonomics, 43(6), 979–984. https://doi.org/10.1016/j.apergo.2012.01.007.
  • Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, A. (2012). The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 88, 32–43. http://doi.org/10.1016/j.compag.2012.06.007
  • Anastacio, A., Silva, R., & Carvalho, I.S. (2016). Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network. Journal of Food Science and Technology, 53(12), 4117–4125. http://doi.org/10.1007/s13197-016-2354-1
  • Asiltürk, I., & Cunkas, M. (2011). Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Systems with Applications. 38(5), 5826–5832. https://doi.org/10.1016/j.eswa.2010.11.041.
  • Bataineh, M., & Marler, T. (2017). Neural network for regression problems with reduced training sets. Neural Networks, 95, 1–9. http://doi.org/10.1016/j.neunet.2017.07.018
  • Bhagya Raj, G.V.S., & Dash, K.K. (2022). Comprehensive study on applications of artificial neural network in food process modeling. Critical Reviews in Food Science and Nutrition. 62(10). 2756–2783. https://doi.org/10.1080/10408398.2020.1858398
  • Bocco, M., Willington, E., & Arias, M. (2010). Comparison of Regression and Neural Networks Models to Estimate Solar Radiation. Chilean Journal of Agricultural Research, 70(3). http://doi.org/10.4067/S0718-58392010000300010.
  • Bull, M. K., Zerdin, K., Howe, E., Goicoechea, D., Paramanandhan, P., Stockman, R., Sellahewa, J., Szabo, E. A., Johnson, R. L., & Stewart, C. M., 2004. The Effect of High Pressure Processing on The Microbial, Physical and Chemical Properties of Valencia and Navel Orange Juice. Innovative Food Science and Emerging Technologies, 5:135–149. https://doi.org/10.1016/j.ifset.2003.11.005
  • Burdurlu, H. S., Koca, N., & Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering. 74(2), 211–216. http://doi.org/10.1016/j.jfoodeng.2005.03.026
  • Chegini, G. R., Khazaei, J., Ghobadian, B., & Goudarzi, A. M. (2008). Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. Journal of Food Engineering, 84(4), 534–543. http://doi.org/10.1016/j.jfoodeng.2007.06.007
  • Chia, K. S., Abdul Rahim, H., & Abdul Rahim, R. (2012). Prediction of soluble solids content of pineapple via non-invasive low cost visible and shortwave near infrared spectroscopy and artificial neural network. Biosystems Engineering, 113(2), 158–165. http://doi.org/10.1016/j.biosystemseng.2012.07.003
  • Cortes, C., Torregrosa, F., Esteve, M. J., & Frígola, A. (2006). Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. Journal of Agricultural and Food Chemistry, 54(17), 6247–6254. https://doi.org/10.1021/jf060995q.
  • Ding, B., Li, L., & Yang, H. (2017). An artificial neural network approach to estimating the enzymatic hydrolysis of Chinese yam ( Dioscorea opposita Thunb.) starch. Journal of Food Processing and Preservation, (April 2016), e13176. http://doi.org/10.1111/jfpp.13176.
  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  • Elez-Martinez P., Soliva-fortuny, R. C., & Mart, O. (2006). Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. 321–329. http://doi.org/10.1007/s00217-005-0073-3
  • Erbil, Y., Babaarslan, O., & Ilhan, İ. (2018). A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. The Journal of The Textile Institute, 109(4), 560–568. https://doi.org/10.1080/00405000.2017.1361164.
  • Erzin, Y., Rao, B. H., Patel, A., Gumaste, S. D., & Singh, D. N. (2010). Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity. International Journal of Thermal Sciences, 49(1), 118–130. http://doi.org/10.1016/j.ijthermalsci.2009.06.008
  • Erzin, Y., & Cetin, T. (2012). The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces. Scientia Iranica, 19(2), 188–194. http://doi.org/10.1016/j.scient.2012.02.008
  • Fazaeli, M., Emam-Djomeh, Z., Omid, M., & Kalbasi-Ashtari, A. (2013). Prediction of the Physicochemical Properties of Spray-Dried Black Mulberry (Morus nigra) Juice using Artificial Neural Networks. Food and Bioprocess Technology, 6(2), 585–590. https://doi.org/10.1007/s11947-011-0648-x.
  • Fustier, P., St-Germain, F., Lamarche, F., & Mondor, M. (2011). Non-enzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments. Innovative Food Science and Emerging Technologies, 12(4), 491–498. http://doi.org/10.1016/j.ifset.2011.07.014
  • Gama, J. J. T. & Sylos, C. M., 2007. Effect of Thermal Pasteurization and Concentration on Carotenoid Composition of Brazilian Valencia Orange Juice. Food Chemistry, 100:1686–1690. https://doi.org/10.1016/j.foodchem.2005.01.062
  • Ghani, I. M. M., & Ahmad, S. (2010). Stepwise multiple regression method to forecast fish landing. Procedia - Social and Behavioral Sciences, 8(5), 549–554. http://doi.org/10.1016/j.sbspro.2010.12.076
  • Gomez Ruiz, B., Roux, S., Courtois, F., Bonazzi, C., 2018. Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents. Food Res. Int. 106, 901–908.
  • Gonçalves Neto, J., Vidal Ozorio, L., Campos de Abreu, T. C., Ferreira dos Santos, B., & Pradelle, F. (2021). Modeling of biogas production from food, fruits and vegetables wastes using artificial neural network (ANN). Fuel, 285(August 2020), 119081. https://doi.org/10.1016/j.fuel.2020.119081
  • Huang, Y., Kangas, L. J., & Rasco, B. A. (2007). Applications of Artificial Neural Networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2), 113–126. http://doi.org/10.1080/10408390600626453.
  • İnan-Çınkır, N., Süfer, Ö., & Pandiselvam, R. (2024). Kinetic and artificial neural network modeling of dried black beauty eggplant (Solanum melongena L.) slices during rehydration. Journal of Food Processing Engineering. 47(3), 1–12. https://doi.org/10.1111/jfpe.14567
  • Kalogirou, S.A. (1999). Applications of artificial neural networks in energy systems. Energy Conversion and Management, 40(10), 1073–1087. http://doi.org/10.1016/S0196-8904(99)00012-6
  • Khashei. M.. Zeinal Hamadani. A.. & Bijari. M. (2012). A novel hybrid classification model of artificial neural networks and multiple linear regression models. Expert Systems with Applications. 39(3). 2606–2620. https://doi.org/10.1016/j.eswa.2011.08.116.
  • Kolasa-Wiecek, A. (2015). ScienceDirect Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland. JES, 30, 47–54. http://doi.org/10.1016/j.jes.2014.09.037
  • Kothakota, A., Pandiselvam, R., Siliveru, K., Pandey, J. P., Sagarika, N., Srinivas, C. H. S., Kumar, A., Singh, A., & Prakash, S. D. (2021). Modeling and optimization of process parameters for nutritional enhancement in enzymatic milled rice by multiple linear regression (MLR) and artificial neural network (ANN). Foods, 10(12). https://doi.org/10.3390/foods10122975
  • Lee, H. S., & Castle, W. S. (2001). Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd Blood orange juices. Journal of Agricultural and Food Chemistry, 49(2), 877–882. http://doi.org/10.1021/jf000654r
  • Lee, H. S., & Coates, G. A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT - Food Science and Technology, 36(1), 153–156. http://doi.org/10.1016/S0023-6438(02)00087-7
  • Li, S., Hu, Y., Hong, Y., Xu, L., Zhou, M., Fu, C., … Li, D. (2016). Analysis of the Hydrolytic Capacities of Aspergillus oryzae Proteases on Soybean Protein Using Artificial Neural Networks. Journal of Food Processing and Preservation, 40(5), 918–924. http://doi.org/10.1111/jfpp.12670
  • Lin, F. J. (2008). Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Quality and Quantity, 42(3), 417–426. http://doi.org/10.1007/s11135-006-9055-1
  • Maghrebi, M., Sammut, C., & Waller, T. S. (2014). Predicting the Duration of Concrete Operations Via Artificial Neural Network and by Focusing on Supply Chain Parameters. Building Research Journal, 61(1), 1–14. https://doi.org/10.2478/brj-2014-0001.
  • Matworks, 2018. Improve Shallow Neural Network Generalization and AvoidOverfitting. Retrieved on October 17. 2018 from: https://www.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid overfitting.html;jsessionid=1c721f48297e43c23521782435ab.ed
  • Meerasri, J., & Sothornvit, R. (2022). Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Studies in Thermal Engineering, 33(March), 101942. https://doi.org/10.1016/j.csite.2022.101942
  • Mekanik, F., Imteaz, M. A., Gato-Trinidad, S., & Elmahdi, A. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11–21. http://doi.org/10.1016/j.jhydrol.2013.08.035
  • Meléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2007). Review: Analysis of carotenoids in orange juice. Journal of Food Composition and Analysis, 20(7), 638–649. http://doi.org/10.1016/j.jfca.2007.04.006
  • Nejatdarabi S., & Mohebbi, M. (2023). Predicting the rehydration process of mushroom powder by multiple linear regression (MLR) and artificial neural network (ANN) in different rehydration medium. Journal of Food Measurement and Characterization. 17(2), 1962–1973.
  • Niazian, M., Sadat-Noori, S. A., & Abdipour, M. (2018). Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). Journal of Applied Research on Medicinal a3nd Aromatic Plants, 9(November 2017), 124–131. http://doi.org/10.1016/j.jarmap.2018.04.001
  • Nikbakht, A. M., Motevali, A., & Minaei, S. (2014). Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Journal of the Saudi Society of Agricultural Sciences, 13(2), 81–91. https://doi.org/10.1016/j.jssas.2013.01.005
  • Niresh, J. A., & Velnampy, T. (2014). Firm Size and Profitability: A Study of Listed Manufacturing Firms ed Manufacturing Firms in Sri Lanka. International Journal of Business and Management, 9(4), 57–64. https://doi.org/10.5539/ijbm.v9n4p57.
  • Pham, H.T.T., Bazmawe, M., Kebede, B., Buve, C., Hendrickx, M.E., Van Loey, A.M.,2019. Changes in the soluble and insoluble compounds of shelf-stable orange juice in relation to non-enzymatic browning during storage. J. Agric. Food Chem. 67 (46), 12854–12862.
  • Polydera, A.C., Stoforos, N.G., Taoukis, P.S., 2003. Comparative shelf life study an vitamin C loss kinetics in pasteurised and high pressure processed reconstitute orange juice. J. Food Eng. 60 (1), 21–29.
  • Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria Engineering Journal, 52(3), 507–516. http://doi.org/10.1016/j.aej.2013.06.007.
  • Rai, P., Majumdar, G. C., DasGupta, S., & De, S. (2005). Prediction of the viscosity of clarified fruit juice using artificial neural network: A combined effect of concentration and temperature. Journal of Food Engineering, 68(4), 527–533. http://doi.org/10.1016/j.jfoodeng.2004.07.003
  • Remini, H., Mertz, C., Belbahi, A., Achir, N., Dornier, M., & Madani, K. (2015). Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage. Food Chemistry, 173, 665–673. https://doi.org/10.1016/j.foodchem.2014.10.069
  • Sablani, S. S., & Rahman, M. S. (2003). Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity. Food Research International, 36(6), 617–623. https://doi.org/10.1016/S0963-9969(03)00012-7
  • Saraceno, A., Aversa, M., & Curcio, S. (2012). Advanced Modeling of Food Convective Drying: A Comparison Between Artificial Neural Networks and Hybrid Approaches. Food and Bioprocess Technology, 5(5), 1694–1705. https://doi.org/10.1007/s11947-010-0477-3.
  • Shacham, M., & Brauner, N. (2014). Application of stepwise regression for dynamic parameter estimation. Computers and Chemical Engineering, 69, 26–38. http://doi.org/10.1016/j.compchemeng.2014.06.013
  • Shinoda, Y., Murata, M., Homma, S., & Komura, H. (2004). Browning and Decomposed Products of Model Orange Juice. Bioscience, Biotechnology, and Biochemistry, 68(3), 529–536. https://doi.org/10.1271/bbb.68.529
  • Sokač Cvetnić, T., Krog, K., Valinger, D., Gajdoš Kljusurić, J., Benković, M., Jurina, T., Jakovljević, T., Radojčić Redovniković, I., & Jurinjak Tušek, A. (2024). Application of Multivariate Regression and Artificial Neural Network Modelling for Prediction of Physicochemical Properties of Grape-Skin Compost. Bioengineering, 11(3). https://doi.org/10.3390/bioengineering11030285
  • Stangierski, J., Weiss, D., & Kaczmarek, A. (2019). Multiple regression models and Artificial Neural Network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese. European Food Research and Technology, 245(11), 2539–2547. https://doi.org/10.1007/s00217-019-03369-y
  • Tehlah, N., Kaewpradit, P., & Mujtaba, I. M. (2016). Artificial neural network based modeling and optimization of refined palm oil process. Neurocomputing, 216, 489–501. https://doi.org/10.1016/j.neucom.2016.07.050.
  • Timmermans, R. A. H., Mastwijk, H. C., Knol, J. J., Quataert, M. C. J., Vervoort, L., Der Plancken, I. Van, … Matser, A. M. (2011). Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innovative Food Science and Emerging Technologies, 12(3), 235–243. https://doi.org/10.1016/j.ifset.2011.05.001.
  • Tiryaki, S., & Aydın, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62, 102–108. http://doi.org/10.1016/j.conbuildmat.2014.03.041.
  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2008). Effects of sonication on the kinetics of orange juice quality parameters. Journal of Agricultural and Food Chemistry, 56(7), 2423–2428. https://doi.org/10.1021/jf073503y.
  • Tiwari, B. K., O’ Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT - Food Science and Technology, 42(3), 700–704. https://doi.org/10.1016/j.lwt.2008.10.009.
  • Torkashvand, A. M., Ahmadi, A., & Nikravesh, N. L. (2017). Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture, 16(7), 1634–1644. https://doi.org/10.1016/S2095-3119(16)61546-0.
  • Tripathy, P. P., & Kumar, S. (2009). Neural network approach for food temperature prediction during solar drying. International Journal of Thermal Sciences, 48(7), 1452–1459. http://doi.org/10.1016/j.ijthermalsci.2008.11.014
  • Vervoort, L., Van Der Plancken, I., Grauwet, T., Timmermans, R. A. H., Mastwijk, H. C., Matser, A. M., … Van Loey, A. (2011). Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innovative Food Science and Emerging Technologies, 12(4), 466–477. https://doi.org/10.1016/j.ifset.2011.06.003.
  • Wibowo, S., Grauwet, T., Kebede, B. T., Hendrickx, M., & Van Loey, A. (2015). Study of chemical changes in pasteurised orange juice during shelf-life: A fingerprinting-kinetics evaluation of the volatile fraction. Food Research International, 75, 295–304. https://doi.org/10.1016/j.foodres.2015.06.020.
  • Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., … Van Loey, A. (2015a). Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 171, 330–340. http://doi.org/10.1016/j.foodchem.2014.09.007
  • Wibowo, S., Grauwet, T., Santiago, J.S., Tomic, J., Vervoort, L., Hendrickx, M., Van Loey, A., (2015b). Quality changes of pasteurised orange juice during storage: a kinetic study of specific parameters and their relation to colour instability. Food Chem. 187, 140–151.
  • Xu, L., Xu, N., Zhu, X., Zhu, Y., Hu, Y., Li, D., & Wang, C. (2014). Modeling of Furfural and 5-Hydroxymethylfurfural Content of Fermented Lotus Root: Artificial Neural Networks and a Genetic Algorithm Approach. International Journal of Food Engineering, 10(4), 757–766. http://doi.org/10.1515/ijfe-2013-0068.
  • Yadav, A. K., & Chandel, S. S. (2017). Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models. Renewable and Sustainable Energy Reviews, 77(December 2016), 955–969. http://doi.org/10.1016/j.rser.2016.12.029
  • Yang, T., Zheng, X., Vidyarthi, SK., Xiao, H., Yao, X., Li., Zang, Y., & Zhang, J. (2023). Artificial Neural Network Modeling and Genetic Algorithm Multiobjective Optimization of Process of Drying-Assisted Walnut Breaking. Foods, 12(9), 1–21. https://doi.org/10.3390/foods12091897
  • Yasar, A., Simsek, E., Bilgili, M., Yucel, A., & Ilhan, I. (2012). Estimation of relative humidity based on artificial neural network approach in the Aegean Region of Turkey. Meteorology and Atmospheric Physics, 115(1–2), 81–87. https://doi.org/10.1007/s00703-011-0168-2.
  • Yeom, H. W., Zhang, Q. H., & Chism, G. W. (2002). Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. Journal of Food Science, 67(6), 2154–2159. http://doi.org/10.1111/j.1365-2621.2002.tb09519.x
  • Youssefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2009). Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Drying Technology, 27(7), 910–917. http://doi.org/10.1080/07373930902988247
  • Yu, P., Low, M. Y., & Zhou, W. (2018). Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends in Food Science and Technology, 71(November 2017), 202–215. http://doi.org/10.1016/j.tifs.2017.11.013
  • Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X., & Lu, H. (2011). Application of Artificial Neural Network (ANN) and Partial Least-Squares Regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal ana. Journal of Agricultural and Food Chemistry, 59(2), 592–600. http://doi.org/10.1021/jf1032476.
  • Zou, H. F., Xia, G. P., Yang, F. T., & Wang, H. Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70(16–18), 2913–2923. http://doi.org/10.1016/j.neucom.2007.01.009.
  • Zulueta, A., Barba, F. J., Esteve, M. J., & Frígola, A. (2013). Changes in Quality and Nutritional Parameters During Refrigerated Storage of an Orange Juice-Milk Beverage Treated by Equivalent Thermal and Non-thermal Processes for Mild Pasteurization. Food and Bioprocess Technology, 6(8), 2018–2030. http://doi.org/10.1007/s11947-012-0858-x.

Isıl işlem uygulanmış portakal suyunda kalite değişimlerinin modellenmesi: yapay sinir ağı ve çoklu doğrusal regresyon yaklaşımlarının karşılaştırmalı bir çalışması

Yıl 2025, Cilt: 29 Sayı: 2, 237 - 254, 16.06.2025
https://doi.org/10.29050/harranziraat.1572534

Öz

Çalışmanın amacı, ısıl işlemden sonra depolama sırasında portakal suyunun esmerleşme indeksi, 5-hidroksimetilfurfural (HMF), askorbik asit ve toplam karotenoid içeriği için çoklu doğrusal regresyon (MLR) ve yapay sinir ağı (ANN) modellerinin tahmin yeteneğini değerlendirmektir. En iyi tasarım YSA modellerini seçmek için gizli katmandaki nöron sayısının, epok sayısının, eğitim algoritmalarının ve transfer fonksiyonlarının etkisi deneme-yanılma yöntemi kullanılarak araştırılmıştır. Tüm bağımsız değişkenlerin bağımlı değişkenler üzerindeki etkisini tespit etmek için çoklu doğrusal regresyon modellerindeki farklı yöntemler (stepwise ve enter) uygulanmıştır. ANN ve MLR modellerinin performansı istatistiksel analiz yoluyla test verileri kullanılarak değerlendirilmiştir. Test verileri için ANN modellerinin performans endekslerine ilişkin olarak, genel R ve R2 sırasıyla; 0,92 ve 0,84 (esmerleşme indeksi), 0,99 ve 0,98 (HMF), 0,92 ve 0,86 (askorbik asit), 0,97 ve 0,94 (toplam karotenoid içeriği) belirlenmiştir. Test verileri için MLR modellerinin R ve R2 değerleri sırasıyla 0,79 ve 0,68 (esmerleşme indeksi), 0,94 ve 0,88 (HMF), 0,92 ve 0,85 (askorbik asit), 0,93 ve 0,90 (toplam karotenoid içeriği) olarak tespit edilmiştir. YSA modellerinin üstün tahmin gücü, istatistiksel teknikler kullanarak parametreleri hesaplamaya gerek kalmadan doğrudan örneklerden öğrenebilmeleridir. Sonuçlar, ANN modelinin yüksek R ve R2 değeri, ve düşük hata değerleri ile MLR modellerine kıyasla daha büyük potansiyel göstermiştir. Askorbik asit için hem ANN hem de MLR'nin tahminleme performansı neredeyse aynı düzeyde olduğu belirlenmiştir.

Proje Numarası

ZF2012YL3

Kaynakça

  • Agcam, E., Akyildiz, A., & Evrendilek, G. A. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143, 354–361. http://doi.org/10.1016/j.foodchem.2013.07.115
  • Agcam, E., Akyildiz, A., & Akdemir Evrendilek, G. (2016). A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food and Bioproducts Processing, 99, 90–98. https://doi.org/10.1016/j.fbp.2016.04.006
  • Akyıldız A., Mertoglu TS., & Ağçam, E. (2021). Kinetic study for ascorbic acid degradation. hydroxymethylfurfural and furfural formations in orange juice. Journal of Food Composition and Analysis. 102. 103996. https://doi.org/10.1016/j.jfca.2021.103996
  • Agha, S. R., & Alnahhal, M. J. (2012). Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design. Applied Ergonomics, 43(6), 979–984. https://doi.org/10.1016/j.apergo.2012.01.007.
  • Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, A. (2012). The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 88, 32–43. http://doi.org/10.1016/j.compag.2012.06.007
  • Anastacio, A., Silva, R., & Carvalho, I.S. (2016). Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network. Journal of Food Science and Technology, 53(12), 4117–4125. http://doi.org/10.1007/s13197-016-2354-1
  • Asiltürk, I., & Cunkas, M. (2011). Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Systems with Applications. 38(5), 5826–5832. https://doi.org/10.1016/j.eswa.2010.11.041.
  • Bataineh, M., & Marler, T. (2017). Neural network for regression problems with reduced training sets. Neural Networks, 95, 1–9. http://doi.org/10.1016/j.neunet.2017.07.018
  • Bhagya Raj, G.V.S., & Dash, K.K. (2022). Comprehensive study on applications of artificial neural network in food process modeling. Critical Reviews in Food Science and Nutrition. 62(10). 2756–2783. https://doi.org/10.1080/10408398.2020.1858398
  • Bocco, M., Willington, E., & Arias, M. (2010). Comparison of Regression and Neural Networks Models to Estimate Solar Radiation. Chilean Journal of Agricultural Research, 70(3). http://doi.org/10.4067/S0718-58392010000300010.
  • Bull, M. K., Zerdin, K., Howe, E., Goicoechea, D., Paramanandhan, P., Stockman, R., Sellahewa, J., Szabo, E. A., Johnson, R. L., & Stewart, C. M., 2004. The Effect of High Pressure Processing on The Microbial, Physical and Chemical Properties of Valencia and Navel Orange Juice. Innovative Food Science and Emerging Technologies, 5:135–149. https://doi.org/10.1016/j.ifset.2003.11.005
  • Burdurlu, H. S., Koca, N., & Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering. 74(2), 211–216. http://doi.org/10.1016/j.jfoodeng.2005.03.026
  • Chegini, G. R., Khazaei, J., Ghobadian, B., & Goudarzi, A. M. (2008). Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. Journal of Food Engineering, 84(4), 534–543. http://doi.org/10.1016/j.jfoodeng.2007.06.007
  • Chia, K. S., Abdul Rahim, H., & Abdul Rahim, R. (2012). Prediction of soluble solids content of pineapple via non-invasive low cost visible and shortwave near infrared spectroscopy and artificial neural network. Biosystems Engineering, 113(2), 158–165. http://doi.org/10.1016/j.biosystemseng.2012.07.003
  • Cortes, C., Torregrosa, F., Esteve, M. J., & Frígola, A. (2006). Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. Journal of Agricultural and Food Chemistry, 54(17), 6247–6254. https://doi.org/10.1021/jf060995q.
  • Ding, B., Li, L., & Yang, H. (2017). An artificial neural network approach to estimating the enzymatic hydrolysis of Chinese yam ( Dioscorea opposita Thunb.) starch. Journal of Food Processing and Preservation, (April 2016), e13176. http://doi.org/10.1111/jfpp.13176.
  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  • Elez-Martinez P., Soliva-fortuny, R. C., & Mart, O. (2006). Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. 321–329. http://doi.org/10.1007/s00217-005-0073-3
  • Erbil, Y., Babaarslan, O., & Ilhan, İ. (2018). A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. The Journal of The Textile Institute, 109(4), 560–568. https://doi.org/10.1080/00405000.2017.1361164.
  • Erzin, Y., Rao, B. H., Patel, A., Gumaste, S. D., & Singh, D. N. (2010). Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity. International Journal of Thermal Sciences, 49(1), 118–130. http://doi.org/10.1016/j.ijthermalsci.2009.06.008
  • Erzin, Y., & Cetin, T. (2012). The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces. Scientia Iranica, 19(2), 188–194. http://doi.org/10.1016/j.scient.2012.02.008
  • Fazaeli, M., Emam-Djomeh, Z., Omid, M., & Kalbasi-Ashtari, A. (2013). Prediction of the Physicochemical Properties of Spray-Dried Black Mulberry (Morus nigra) Juice using Artificial Neural Networks. Food and Bioprocess Technology, 6(2), 585–590. https://doi.org/10.1007/s11947-011-0648-x.
  • Fustier, P., St-Germain, F., Lamarche, F., & Mondor, M. (2011). Non-enzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments. Innovative Food Science and Emerging Technologies, 12(4), 491–498. http://doi.org/10.1016/j.ifset.2011.07.014
  • Gama, J. J. T. & Sylos, C. M., 2007. Effect of Thermal Pasteurization and Concentration on Carotenoid Composition of Brazilian Valencia Orange Juice. Food Chemistry, 100:1686–1690. https://doi.org/10.1016/j.foodchem.2005.01.062
  • Ghani, I. M. M., & Ahmad, S. (2010). Stepwise multiple regression method to forecast fish landing. Procedia - Social and Behavioral Sciences, 8(5), 549–554. http://doi.org/10.1016/j.sbspro.2010.12.076
  • Gomez Ruiz, B., Roux, S., Courtois, F., Bonazzi, C., 2018. Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents. Food Res. Int. 106, 901–908.
  • Gonçalves Neto, J., Vidal Ozorio, L., Campos de Abreu, T. C., Ferreira dos Santos, B., & Pradelle, F. (2021). Modeling of biogas production from food, fruits and vegetables wastes using artificial neural network (ANN). Fuel, 285(August 2020), 119081. https://doi.org/10.1016/j.fuel.2020.119081
  • Huang, Y., Kangas, L. J., & Rasco, B. A. (2007). Applications of Artificial Neural Networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2), 113–126. http://doi.org/10.1080/10408390600626453.
  • İnan-Çınkır, N., Süfer, Ö., & Pandiselvam, R. (2024). Kinetic and artificial neural network modeling of dried black beauty eggplant (Solanum melongena L.) slices during rehydration. Journal of Food Processing Engineering. 47(3), 1–12. https://doi.org/10.1111/jfpe.14567
  • Kalogirou, S.A. (1999). Applications of artificial neural networks in energy systems. Energy Conversion and Management, 40(10), 1073–1087. http://doi.org/10.1016/S0196-8904(99)00012-6
  • Khashei. M.. Zeinal Hamadani. A.. & Bijari. M. (2012). A novel hybrid classification model of artificial neural networks and multiple linear regression models. Expert Systems with Applications. 39(3). 2606–2620. https://doi.org/10.1016/j.eswa.2011.08.116.
  • Kolasa-Wiecek, A. (2015). ScienceDirect Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland. JES, 30, 47–54. http://doi.org/10.1016/j.jes.2014.09.037
  • Kothakota, A., Pandiselvam, R., Siliveru, K., Pandey, J. P., Sagarika, N., Srinivas, C. H. S., Kumar, A., Singh, A., & Prakash, S. D. (2021). Modeling and optimization of process parameters for nutritional enhancement in enzymatic milled rice by multiple linear regression (MLR) and artificial neural network (ANN). Foods, 10(12). https://doi.org/10.3390/foods10122975
  • Lee, H. S., & Castle, W. S. (2001). Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd Blood orange juices. Journal of Agricultural and Food Chemistry, 49(2), 877–882. http://doi.org/10.1021/jf000654r
  • Lee, H. S., & Coates, G. A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT - Food Science and Technology, 36(1), 153–156. http://doi.org/10.1016/S0023-6438(02)00087-7
  • Li, S., Hu, Y., Hong, Y., Xu, L., Zhou, M., Fu, C., … Li, D. (2016). Analysis of the Hydrolytic Capacities of Aspergillus oryzae Proteases on Soybean Protein Using Artificial Neural Networks. Journal of Food Processing and Preservation, 40(5), 918–924. http://doi.org/10.1111/jfpp.12670
  • Lin, F. J. (2008). Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Quality and Quantity, 42(3), 417–426. http://doi.org/10.1007/s11135-006-9055-1
  • Maghrebi, M., Sammut, C., & Waller, T. S. (2014). Predicting the Duration of Concrete Operations Via Artificial Neural Network and by Focusing on Supply Chain Parameters. Building Research Journal, 61(1), 1–14. https://doi.org/10.2478/brj-2014-0001.
  • Matworks, 2018. Improve Shallow Neural Network Generalization and AvoidOverfitting. Retrieved on October 17. 2018 from: https://www.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid overfitting.html;jsessionid=1c721f48297e43c23521782435ab.ed
  • Meerasri, J., & Sothornvit, R. (2022). Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Studies in Thermal Engineering, 33(March), 101942. https://doi.org/10.1016/j.csite.2022.101942
  • Mekanik, F., Imteaz, M. A., Gato-Trinidad, S., & Elmahdi, A. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11–21. http://doi.org/10.1016/j.jhydrol.2013.08.035
  • Meléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2007). Review: Analysis of carotenoids in orange juice. Journal of Food Composition and Analysis, 20(7), 638–649. http://doi.org/10.1016/j.jfca.2007.04.006
  • Nejatdarabi S., & Mohebbi, M. (2023). Predicting the rehydration process of mushroom powder by multiple linear regression (MLR) and artificial neural network (ANN) in different rehydration medium. Journal of Food Measurement and Characterization. 17(2), 1962–1973.
  • Niazian, M., Sadat-Noori, S. A., & Abdipour, M. (2018). Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). Journal of Applied Research on Medicinal a3nd Aromatic Plants, 9(November 2017), 124–131. http://doi.org/10.1016/j.jarmap.2018.04.001
  • Nikbakht, A. M., Motevali, A., & Minaei, S. (2014). Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Journal of the Saudi Society of Agricultural Sciences, 13(2), 81–91. https://doi.org/10.1016/j.jssas.2013.01.005
  • Niresh, J. A., & Velnampy, T. (2014). Firm Size and Profitability: A Study of Listed Manufacturing Firms ed Manufacturing Firms in Sri Lanka. International Journal of Business and Management, 9(4), 57–64. https://doi.org/10.5539/ijbm.v9n4p57.
  • Pham, H.T.T., Bazmawe, M., Kebede, B., Buve, C., Hendrickx, M.E., Van Loey, A.M.,2019. Changes in the soluble and insoluble compounds of shelf-stable orange juice in relation to non-enzymatic browning during storage. J. Agric. Food Chem. 67 (46), 12854–12862.
  • Polydera, A.C., Stoforos, N.G., Taoukis, P.S., 2003. Comparative shelf life study an vitamin C loss kinetics in pasteurised and high pressure processed reconstitute orange juice. J. Food Eng. 60 (1), 21–29.
  • Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria Engineering Journal, 52(3), 507–516. http://doi.org/10.1016/j.aej.2013.06.007.
  • Rai, P., Majumdar, G. C., DasGupta, S., & De, S. (2005). Prediction of the viscosity of clarified fruit juice using artificial neural network: A combined effect of concentration and temperature. Journal of Food Engineering, 68(4), 527–533. http://doi.org/10.1016/j.jfoodeng.2004.07.003
  • Remini, H., Mertz, C., Belbahi, A., Achir, N., Dornier, M., & Madani, K. (2015). Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage. Food Chemistry, 173, 665–673. https://doi.org/10.1016/j.foodchem.2014.10.069
  • Sablani, S. S., & Rahman, M. S. (2003). Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity. Food Research International, 36(6), 617–623. https://doi.org/10.1016/S0963-9969(03)00012-7
  • Saraceno, A., Aversa, M., & Curcio, S. (2012). Advanced Modeling of Food Convective Drying: A Comparison Between Artificial Neural Networks and Hybrid Approaches. Food and Bioprocess Technology, 5(5), 1694–1705. https://doi.org/10.1007/s11947-010-0477-3.
  • Shacham, M., & Brauner, N. (2014). Application of stepwise regression for dynamic parameter estimation. Computers and Chemical Engineering, 69, 26–38. http://doi.org/10.1016/j.compchemeng.2014.06.013
  • Shinoda, Y., Murata, M., Homma, S., & Komura, H. (2004). Browning and Decomposed Products of Model Orange Juice. Bioscience, Biotechnology, and Biochemistry, 68(3), 529–536. https://doi.org/10.1271/bbb.68.529
  • Sokač Cvetnić, T., Krog, K., Valinger, D., Gajdoš Kljusurić, J., Benković, M., Jurina, T., Jakovljević, T., Radojčić Redovniković, I., & Jurinjak Tušek, A. (2024). Application of Multivariate Regression and Artificial Neural Network Modelling for Prediction of Physicochemical Properties of Grape-Skin Compost. Bioengineering, 11(3). https://doi.org/10.3390/bioengineering11030285
  • Stangierski, J., Weiss, D., & Kaczmarek, A. (2019). Multiple regression models and Artificial Neural Network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese. European Food Research and Technology, 245(11), 2539–2547. https://doi.org/10.1007/s00217-019-03369-y
  • Tehlah, N., Kaewpradit, P., & Mujtaba, I. M. (2016). Artificial neural network based modeling and optimization of refined palm oil process. Neurocomputing, 216, 489–501. https://doi.org/10.1016/j.neucom.2016.07.050.
  • Timmermans, R. A. H., Mastwijk, H. C., Knol, J. J., Quataert, M. C. J., Vervoort, L., Der Plancken, I. Van, … Matser, A. M. (2011). Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innovative Food Science and Emerging Technologies, 12(3), 235–243. https://doi.org/10.1016/j.ifset.2011.05.001.
  • Tiryaki, S., & Aydın, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62, 102–108. http://doi.org/10.1016/j.conbuildmat.2014.03.041.
  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2008). Effects of sonication on the kinetics of orange juice quality parameters. Journal of Agricultural and Food Chemistry, 56(7), 2423–2428. https://doi.org/10.1021/jf073503y.
  • Tiwari, B. K., O’ Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT - Food Science and Technology, 42(3), 700–704. https://doi.org/10.1016/j.lwt.2008.10.009.
  • Torkashvand, A. M., Ahmadi, A., & Nikravesh, N. L. (2017). Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture, 16(7), 1634–1644. https://doi.org/10.1016/S2095-3119(16)61546-0.
  • Tripathy, P. P., & Kumar, S. (2009). Neural network approach for food temperature prediction during solar drying. International Journal of Thermal Sciences, 48(7), 1452–1459. http://doi.org/10.1016/j.ijthermalsci.2008.11.014
  • Vervoort, L., Van Der Plancken, I., Grauwet, T., Timmermans, R. A. H., Mastwijk, H. C., Matser, A. M., … Van Loey, A. (2011). Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innovative Food Science and Emerging Technologies, 12(4), 466–477. https://doi.org/10.1016/j.ifset.2011.06.003.
  • Wibowo, S., Grauwet, T., Kebede, B. T., Hendrickx, M., & Van Loey, A. (2015). Study of chemical changes in pasteurised orange juice during shelf-life: A fingerprinting-kinetics evaluation of the volatile fraction. Food Research International, 75, 295–304. https://doi.org/10.1016/j.foodres.2015.06.020.
  • Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., … Van Loey, A. (2015a). Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 171, 330–340. http://doi.org/10.1016/j.foodchem.2014.09.007
  • Wibowo, S., Grauwet, T., Santiago, J.S., Tomic, J., Vervoort, L., Hendrickx, M., Van Loey, A., (2015b). Quality changes of pasteurised orange juice during storage: a kinetic study of specific parameters and their relation to colour instability. Food Chem. 187, 140–151.
  • Xu, L., Xu, N., Zhu, X., Zhu, Y., Hu, Y., Li, D., & Wang, C. (2014). Modeling of Furfural and 5-Hydroxymethylfurfural Content of Fermented Lotus Root: Artificial Neural Networks and a Genetic Algorithm Approach. International Journal of Food Engineering, 10(4), 757–766. http://doi.org/10.1515/ijfe-2013-0068.
  • Yadav, A. K., & Chandel, S. S. (2017). Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models. Renewable and Sustainable Energy Reviews, 77(December 2016), 955–969. http://doi.org/10.1016/j.rser.2016.12.029
  • Yang, T., Zheng, X., Vidyarthi, SK., Xiao, H., Yao, X., Li., Zang, Y., & Zhang, J. (2023). Artificial Neural Network Modeling and Genetic Algorithm Multiobjective Optimization of Process of Drying-Assisted Walnut Breaking. Foods, 12(9), 1–21. https://doi.org/10.3390/foods12091897
  • Yasar, A., Simsek, E., Bilgili, M., Yucel, A., & Ilhan, I. (2012). Estimation of relative humidity based on artificial neural network approach in the Aegean Region of Turkey. Meteorology and Atmospheric Physics, 115(1–2), 81–87. https://doi.org/10.1007/s00703-011-0168-2.
  • Yeom, H. W., Zhang, Q. H., & Chism, G. W. (2002). Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. Journal of Food Science, 67(6), 2154–2159. http://doi.org/10.1111/j.1365-2621.2002.tb09519.x
  • Youssefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2009). Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Drying Technology, 27(7), 910–917. http://doi.org/10.1080/07373930902988247
  • Yu, P., Low, M. Y., & Zhou, W. (2018). Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends in Food Science and Technology, 71(November 2017), 202–215. http://doi.org/10.1016/j.tifs.2017.11.013
  • Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X., & Lu, H. (2011). Application of Artificial Neural Network (ANN) and Partial Least-Squares Regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal ana. Journal of Agricultural and Food Chemistry, 59(2), 592–600. http://doi.org/10.1021/jf1032476.
  • Zou, H. F., Xia, G. P., Yang, F. T., & Wang, H. Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70(16–18), 2913–2923. http://doi.org/10.1016/j.neucom.2007.01.009.
  • Zulueta, A., Barba, F. J., Esteve, M. J., & Frígola, A. (2013). Changes in Quality and Nutritional Parameters During Refrigerated Storage of an Orange Juice-Milk Beverage Treated by Equivalent Thermal and Non-thermal Processes for Mild Pasteurization. Food and Bioprocess Technology, 6(8), 2018–2030. http://doi.org/10.1007/s11947-012-0858-x.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Meyve-Sebze Teknolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Asiye Akyıldız 0000-0001-5584-0849

Tüba Şimşek Mertoğlu 0000-0002-9694-211X

Nuray İnan Çınkır 0000-0002-8878-6794

Erdal Ağçam 0000-0002-2677-2020

Proje Numarası ZF2012YL3
Erken Görünüm Tarihi 11 Haziran 2025
Yayımlanma Tarihi 16 Haziran 2025
Gönderilme Tarihi 23 Ekim 2024
Kabul Tarihi 19 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 2

Kaynak Göster

APA Akyıldız, A., Şimşek Mertoğlu, T., İnan Çınkır, N., Ağçam, E. (2025). Modeling quality changes in heat-processed orange juice: a comparative study of artificial neural network and multiple linear regression approaches. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(2), 237-254. https://doi.org/10.29050/harranziraat.1572534

Derginin Tarandığı İndeksler

13435  19617   22065  13436  1344013445  13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.