Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 46 Sayı: 1, 13 - 29, 01.03.2018

Öz

Kaynakça

  • D.G. Arkfield, E. Rubenstein, Quest for the Holy Grail to cure arthrithis and osteoporosis: emphasis on bone drug delivery systems, Adv. Drug. Deliver. Rev., 57 (2005) 939-944.
  • M.O. Emeje, I.C. Obidike, E.I. Akpabio, S.I. Ofoefule, Toxicology and pharmaceutical science, Recent Advances in Novel Drug Carrier Systems, InTech, Turkey, 2012.
  • R.W. Matthew, R. Agarwal, Heart disease and stroke statistics, Am. Heart Assoc., 59 (2012) 1089-1095.
  • D.H. Ellison, J. Loffing, Thiazide effects and side effects: insights from molecular genetics, Am. Heart Assoc., 54 (2009) 196-202.
  • Sica DA, Resistant hypertension: diagnosis, evaluation, and treatment, Am. Heart Assoc., 47 (2006) 321-322.
  • Kurtz TW, Chlorthalidone: don’t call it “thiazide-like” anymore, Am. Heart Assoc., 56 (2010) 335-337.
  • E.K. Main, D.M. Main, S.G. Gabbe, Chronic oral terbutaline tocolytic therapy as associated with maternal glucose intolerance, Am. J. Obstetrics & Gynecolog., 157 (1987) 644-647.
  • J.E. Gerich, M. Langlois, C. Noacco, V. Schneider, P.H. Forsham, Adrenergic modulation of pancreatic glucagon secretion in man, J. Clinical. Inves., 53 (1974) 1441-1446.
  • L.P. Boulet, A. Becker, D. Bérubé, (CAMJ) Can. Med. Assoc. J., 161 (1999) S1-S62.
  • Z. Jia, T. Ramstad, M. Zhong, Medium-throughput pK a screening of pharmaceuticals by pressure-assisted capillary, Electrophoresis., 22 (2001) 1112-118.
  • C.E. Kibbey, S.K. Poole, B. Robinson, J.D. Jackson, D. Durham, An integrated process for measuring the physicochemical properties of drug candidates in a preclinical discovery environment, J. Pharm. Sci., 90 (2001) 1164-1175.
  • W. Stumm, J.J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters, WileyInterscience, New York (1996).
  • G. Thomas, Medicinal chemistry, an introduction, John Wiley & Sons: West Sussex (2000).
  • A. Avdeef, J.J. Bucher, Accurate measurements of the concentration of hydrogen ions, Anal. Chem., 50 (1978) 2137-2142.
  • Z. Qiang, C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water. Res., 38 (2004) 2874- 2890.
  • J.L. Beltra´n, N. Sanli, G. Fonrodona, D. Barro´n, G. Ozkanb, J. Barbosa, Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media, Anal. Chim. Acta., 484 (2003) 253-263.
  • H.Y. Ando, T. Heimbach, pKa determinations by using a HPLC equipped with DAD as a flow injection apparatus, J. Pharm & Biomedical. Anal., 16 (1997) 31- 39.
  • S.K. Pool, S. Patel, K. Dehring, H. Workman, C.F. Pool, Determination of acid dissociation constants by capillary electrophoresis, J. Chromatography, A., 1037 (2004) 445-454.
  • P. Janosˇ, Determination of equilibrium constants from chromatographic and electrophoretic measurements, J. Chromatography. A., 1037 (2004) 15-28.
  • C.P. Kelly, C.J. Cramer, D.G. Truhlar, Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants, J. Phys. Chem, A., 110 (2006) 2493-2499.
  • K. Mohle, H.J. Hofmann, Stability order of basic peptide conformations reflected by density functional theory, J. Mol. Model., 4 (1998) 53-60.
  • R.D. Tosso, M.A. Zamora, F.D. Survire, R.D. Enriz, Ab initio and DFT study of the conformational energy hypersurface of cyclic Gly-Gly-Gly, J. Phys. Chem. A., 113 (2009) 10818-10825.
  • P. Hudaky, A. Perczel, Conformation dependence of pKa: Ab initio and DFT investigation of histidine, J. Phys. Chem. A., 108 (2004) 6195-6205.
  • M.D. Liptak, K.C. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, Absolute pKa determinations for substituted phenols, J. Am. Chem. Soc., 124 (2002) 6421-6427.
  • N.S. Sosnowska, Calculation of acidic dissociation constants in water: solvation free energy terms. Their accuracy and impact, Theor. Chem. Account., 118 (2007) 281-289.
  • P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. B., 136 (1964) 864-871.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev, A., 38 (1988) 3098-4003.
  • C. Lee, W. Yang, R.G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev, B., 37 (1988) 785- 792.
  • B.G. Johnson, M.J. Frisch, Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives, Chem. phys. Lett., 216 (1993) 133-139.
  • W.J. Hehre, L. Radom, P.V.R. Schleyer, A.J. Pople, Ab initio molecular orbital theory, Wiley, New York (1989).
  • Z. Dega-Szafran, A. Katrusiak, M. Szafran, Molecular structure of the complex of N-methylmorpholine betaine with 2,4-dinitrophenol, J. Mol. Struct., 741 (2005) 1-9.
  • Program CS Chem3D 5.0; Program for Molecular Modeling and Analysis; Cambridge Soft Corporation: MA, USA (2000).
  • M.J. Frisch et al. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA (1998).
  • Miertus S, Tomasi EJ, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem phys 1982;65: 239-245.
  • H.A. Laitinen, W.E. Harris, Chemical Analysis; McGraw-Hill: New York (1975).
  • R.I. Allen, K.J. Box, J.E.A. Comer, C. Peake, K.Y. Tam, Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs, , J. Pharm & Biomedical. Anal., 17 (1998) 699-712.
  • K. Taka´cs-Nova´k, B. Nosza´l, M. To¨ke´s-Ko¨vesdi, G. Sza´sz, Acid-base properties of terbutaline in terms of protonation macro- and microconstants, J. Pharm & Pharmacology., 47 (1995) 431-438.
  • Z. Szakacs, M. Krasni, B. NoszaI, Determination of microscopic acid–base parameters from NMR–pH titrations, Anal & Bioanal. Chem., 378 (2004) 1428- 1448.
  • M. Borkovec, M. Brxnda, G.J.M. Koper, B. Spiess, Resolution of microscopic Protonation mechanisms in polyprotic molecules, Int. J. Chem., 56 (2002) 695- 700.
  • D.L. Rabenstein, T.L. Sayer, Determination of microscopic acid by nuclear magnetic resonance spectrometry, J. Anal. Chem., 48 (1976) 1141-1146.
  • M. Shalaeva, J. Kenseth, F. Lombardo, A. Bastin, Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers, J. Pharm. Sci., 97 (2008) 2581-2606.
  • P.W. Atkins, Physical Chemistry, 6th ed., Oxford University Press, England (1998).
  • F. Ruff, I.C. Csizmadia, Organic reactions, equilibria, kinetics and mechanism, Elsevier, London (1994).
  • G.A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, Oxford (1997).
  • S.E. Blanco, M.C. Almandoz, F.H. Ferretti, Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods, Spectrochimica. Acta. Part A., 61 (2005) 93-102.
  • Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 22 (1993) 409-416.
  • F. Kiani, A.A. Rostami, S. Sharifi, A. Bahadori, M.J. Chaichi, Determination of acidic dissociation constants of glycine, valine, phenylalanine, glycylvaline, and glycylphenylalanine in water using ab initio methods, J. Chem & Eng. Data., 55 (2010) 2732-2740.

Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods

Yıl 2018, Cilt: 46 Sayı: 1, 13 - 29, 01.03.2018

Öz

I
n the present study, pKa
values of both drug called Chlorthalidone and Terbutaline were determined in
aqueous solution. For this purpose, the B3LYP calculation with the 6-31+G(d) basis set was utilized. The
reactions and equilibria that possess a high hydrogen-band-donor capability and constitute the indispensable
theoretical basis to calculate the acidity constants of Chlorthalidone and Terbutaline, are shown. To analyze
the formation of intermolecular hydrogen bonds between the existent species and water molecules, Tomasi’s
method was used. In this way, it was determined that in alkaline aqueous solutions the cation, anion, and
neutral species of Chlorthalidone and Terbutaline are solvated with one, two, three, and four molecules of
water, respectively. To proceed, the calculated pKa
were compared with the experimental values, which there
is comparable agreement between them. The resulting data illustrated that the method was likely to be useful
for the prediction of pKa values in aqueous solution. 

Kaynakça

  • D.G. Arkfield, E. Rubenstein, Quest for the Holy Grail to cure arthrithis and osteoporosis: emphasis on bone drug delivery systems, Adv. Drug. Deliver. Rev., 57 (2005) 939-944.
  • M.O. Emeje, I.C. Obidike, E.I. Akpabio, S.I. Ofoefule, Toxicology and pharmaceutical science, Recent Advances in Novel Drug Carrier Systems, InTech, Turkey, 2012.
  • R.W. Matthew, R. Agarwal, Heart disease and stroke statistics, Am. Heart Assoc., 59 (2012) 1089-1095.
  • D.H. Ellison, J. Loffing, Thiazide effects and side effects: insights from molecular genetics, Am. Heart Assoc., 54 (2009) 196-202.
  • Sica DA, Resistant hypertension: diagnosis, evaluation, and treatment, Am. Heart Assoc., 47 (2006) 321-322.
  • Kurtz TW, Chlorthalidone: don’t call it “thiazide-like” anymore, Am. Heart Assoc., 56 (2010) 335-337.
  • E.K. Main, D.M. Main, S.G. Gabbe, Chronic oral terbutaline tocolytic therapy as associated with maternal glucose intolerance, Am. J. Obstetrics & Gynecolog., 157 (1987) 644-647.
  • J.E. Gerich, M. Langlois, C. Noacco, V. Schneider, P.H. Forsham, Adrenergic modulation of pancreatic glucagon secretion in man, J. Clinical. Inves., 53 (1974) 1441-1446.
  • L.P. Boulet, A. Becker, D. Bérubé, (CAMJ) Can. Med. Assoc. J., 161 (1999) S1-S62.
  • Z. Jia, T. Ramstad, M. Zhong, Medium-throughput pK a screening of pharmaceuticals by pressure-assisted capillary, Electrophoresis., 22 (2001) 1112-118.
  • C.E. Kibbey, S.K. Poole, B. Robinson, J.D. Jackson, D. Durham, An integrated process for measuring the physicochemical properties of drug candidates in a preclinical discovery environment, J. Pharm. Sci., 90 (2001) 1164-1175.
  • W. Stumm, J.J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters, WileyInterscience, New York (1996).
  • G. Thomas, Medicinal chemistry, an introduction, John Wiley & Sons: West Sussex (2000).
  • A. Avdeef, J.J. Bucher, Accurate measurements of the concentration of hydrogen ions, Anal. Chem., 50 (1978) 2137-2142.
  • Z. Qiang, C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water. Res., 38 (2004) 2874- 2890.
  • J.L. Beltra´n, N. Sanli, G. Fonrodona, D. Barro´n, G. Ozkanb, J. Barbosa, Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media, Anal. Chim. Acta., 484 (2003) 253-263.
  • H.Y. Ando, T. Heimbach, pKa determinations by using a HPLC equipped with DAD as a flow injection apparatus, J. Pharm & Biomedical. Anal., 16 (1997) 31- 39.
  • S.K. Pool, S. Patel, K. Dehring, H. Workman, C.F. Pool, Determination of acid dissociation constants by capillary electrophoresis, J. Chromatography, A., 1037 (2004) 445-454.
  • P. Janosˇ, Determination of equilibrium constants from chromatographic and electrophoretic measurements, J. Chromatography. A., 1037 (2004) 15-28.
  • C.P. Kelly, C.J. Cramer, D.G. Truhlar, Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants, J. Phys. Chem, A., 110 (2006) 2493-2499.
  • K. Mohle, H.J. Hofmann, Stability order of basic peptide conformations reflected by density functional theory, J. Mol. Model., 4 (1998) 53-60.
  • R.D. Tosso, M.A. Zamora, F.D. Survire, R.D. Enriz, Ab initio and DFT study of the conformational energy hypersurface of cyclic Gly-Gly-Gly, J. Phys. Chem. A., 113 (2009) 10818-10825.
  • P. Hudaky, A. Perczel, Conformation dependence of pKa: Ab initio and DFT investigation of histidine, J. Phys. Chem. A., 108 (2004) 6195-6205.
  • M.D. Liptak, K.C. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, Absolute pKa determinations for substituted phenols, J. Am. Chem. Soc., 124 (2002) 6421-6427.
  • N.S. Sosnowska, Calculation of acidic dissociation constants in water: solvation free energy terms. Their accuracy and impact, Theor. Chem. Account., 118 (2007) 281-289.
  • P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. B., 136 (1964) 864-871.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev, A., 38 (1988) 3098-4003.
  • C. Lee, W. Yang, R.G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev, B., 37 (1988) 785- 792.
  • B.G. Johnson, M.J. Frisch, Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives, Chem. phys. Lett., 216 (1993) 133-139.
  • W.J. Hehre, L. Radom, P.V.R. Schleyer, A.J. Pople, Ab initio molecular orbital theory, Wiley, New York (1989).
  • Z. Dega-Szafran, A. Katrusiak, M. Szafran, Molecular structure of the complex of N-methylmorpholine betaine with 2,4-dinitrophenol, J. Mol. Struct., 741 (2005) 1-9.
  • Program CS Chem3D 5.0; Program for Molecular Modeling and Analysis; Cambridge Soft Corporation: MA, USA (2000).
  • M.J. Frisch et al. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA (1998).
  • Miertus S, Tomasi EJ, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem phys 1982;65: 239-245.
  • H.A. Laitinen, W.E. Harris, Chemical Analysis; McGraw-Hill: New York (1975).
  • R.I. Allen, K.J. Box, J.E.A. Comer, C. Peake, K.Y. Tam, Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs, , J. Pharm & Biomedical. Anal., 17 (1998) 699-712.
  • K. Taka´cs-Nova´k, B. Nosza´l, M. To¨ke´s-Ko¨vesdi, G. Sza´sz, Acid-base properties of terbutaline in terms of protonation macro- and microconstants, J. Pharm & Pharmacology., 47 (1995) 431-438.
  • Z. Szakacs, M. Krasni, B. NoszaI, Determination of microscopic acid–base parameters from NMR–pH titrations, Anal & Bioanal. Chem., 378 (2004) 1428- 1448.
  • M. Borkovec, M. Brxnda, G.J.M. Koper, B. Spiess, Resolution of microscopic Protonation mechanisms in polyprotic molecules, Int. J. Chem., 56 (2002) 695- 700.
  • D.L. Rabenstein, T.L. Sayer, Determination of microscopic acid by nuclear magnetic resonance spectrometry, J. Anal. Chem., 48 (1976) 1141-1146.
  • M. Shalaeva, J. Kenseth, F. Lombardo, A. Bastin, Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers, J. Pharm. Sci., 97 (2008) 2581-2606.
  • P.W. Atkins, Physical Chemistry, 6th ed., Oxford University Press, England (1998).
  • F. Ruff, I.C. Csizmadia, Organic reactions, equilibria, kinetics and mechanism, Elsevier, London (1994).
  • G.A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, Oxford (1997).
  • S.E. Blanco, M.C. Almandoz, F.H. Ferretti, Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods, Spectrochimica. Acta. Part A., 61 (2005) 93-102.
  • Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 22 (1993) 409-416.
  • F. Kiani, A.A. Rostami, S. Sharifi, A. Bahadori, M.J. Chaichi, Determination of acidic dissociation constants of glycine, valine, phenylalanine, glycylvaline, and glycylphenylalanine in water using ab initio methods, J. Chem & Eng. Data., 55 (2010) 2732-2740.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Farhoush Kıanı

Ali Rajabalınezhad

Yayımlanma Tarihi 1 Mart 2018
Kabul Tarihi 10 Aralık 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 46 Sayı: 1

Kaynak Göster

APA Kıanı, F., & Rajabalınezhad, A. (2018). Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods. Hacettepe Journal of Biology and Chemistry, 46(1), 13-29.
AMA Kıanı F, Rajabalınezhad A. Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods. HJBC. Mart 2018;46(1):13-29.
Chicago Kıanı, Farhoush, ve Ali Rajabalınezhad. “Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods”. Hacettepe Journal of Biology and Chemistry 46, sy. 1 (Mart 2018): 13-29.
EndNote Kıanı F, Rajabalınezhad A (01 Mart 2018) Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods. Hacettepe Journal of Biology and Chemistry 46 1 13–29.
IEEE F. Kıanı ve A. Rajabalınezhad, “Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods”, HJBC, c. 46, sy. 1, ss. 13–29, 2018.
ISNAD Kıanı, Farhoush - Rajabalınezhad, Ali. “Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods”. Hacettepe Journal of Biology and Chemistry 46/1 (Mart 2018), 13-29.
JAMA Kıanı F, Rajabalınezhad A. Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods. HJBC. 2018;46:13–29.
MLA Kıanı, Farhoush ve Ali Rajabalınezhad. “Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods”. Hacettepe Journal of Biology and Chemistry, c. 46, sy. 1, 2018, ss. 13-29.
Vancouver Kıanı F, Rajabalınezhad A. Determination of Acidic Dissociation Constants of Chlorthalidone and Terbutaline in Water Using DFT and Ab Initio Methods. HJBC. 2018;46(1):13-29.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc