Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 995 - 1005, 15.08.2023
https://doi.org/10.15672/hujms.1187220

Öz

Kaynakça

  • [1] A. J. C. Barré de Saint-Venant, Mémoire sur les lignes courbes non planes, Journ. Ec. Polyt. 30, 1–76, 1846.
  • [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147–152, 2003.
  • [3] B. Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Geom. 9, 1–8, 2016.
  • [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48, 209–214, 2017.
  • [5] M. Crampin, Concircular vector fields and special conformal Killing tensors, in: Differential Geometric Methods in Mechanics and Field Theory, 57–70, Academia Press, Gent, 2007.
  • [6] A. J. Di Scala and G. Ruiz-Hernández, Helix submanifolds of Euclidean spaces, Monasth Math. 157, 205–215, 2009.
  • [7] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (3), 443–473, 1939.
  • [8] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153–163, 2004.
  • [9] I. B. Kim, Special concircular vector fields in Riemannian manifolds, Hirosima Math. J. 12, 77–91, 1982.
  • [10] P. Lucas and J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited, Bull. Belg. Math. Soc. Simon Stevin 23, 133–150, 2016.
  • [11] M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51, 073507, 2010.
  • [12] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102, 531–537, 1995.
  • [13] D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988.
  • [14] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo 16, 195–200, 1940.

Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$

Yıl 2023, , 995 - 1005, 15.08.2023
https://doi.org/10.15672/hujms.1187220

Öz

In this paper we characterize concircular helices in $\mathbb{R}^{3}$ by means of a differential equation involving their curvature and torsion. We find a full description of concircular surfaces in $\mathbb{R}^{3}$ as a special family of ruled surfaces, and we show that $M\subset\mathbb{R}^{3}$ is a proper concircular surface if and only if either $M$ is parallel to a conical surface or $M$ is the normal surface to a spherical curve. Finally, we characterize the concircular helices as geodesics of concircular surfaces.

Kaynakça

  • [1] A. J. C. Barré de Saint-Venant, Mémoire sur les lignes courbes non planes, Journ. Ec. Polyt. 30, 1–76, 1846.
  • [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147–152, 2003.
  • [3] B. Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Geom. 9, 1–8, 2016.
  • [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48, 209–214, 2017.
  • [5] M. Crampin, Concircular vector fields and special conformal Killing tensors, in: Differential Geometric Methods in Mechanics and Field Theory, 57–70, Academia Press, Gent, 2007.
  • [6] A. J. Di Scala and G. Ruiz-Hernández, Helix submanifolds of Euclidean spaces, Monasth Math. 157, 205–215, 2009.
  • [7] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (3), 443–473, 1939.
  • [8] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153–163, 2004.
  • [9] I. B. Kim, Special concircular vector fields in Riemannian manifolds, Hirosima Math. J. 12, 77–91, 1982.
  • [10] P. Lucas and J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited, Bull. Belg. Math. Soc. Simon Stevin 23, 133–150, 2016.
  • [11] M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51, 073507, 2010.
  • [12] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102, 531–537, 1995.
  • [13] D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988.
  • [14] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo 16, 195–200, 1940.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Pascual Lucas 0000-0002-4354-9736

José Antonio Ortega Yagües 0000-0001-9521-1051

Yayımlanma Tarihi 15 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Lucas, P., & Ortega Yagües, J. A. (2023). Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics, 52(4), 995-1005. https://doi.org/10.15672/hujms.1187220
AMA Lucas P, Ortega Yagües JA. Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics. Ağustos 2023;52(4):995-1005. doi:10.15672/hujms.1187220
Chicago Lucas, Pascual, ve José Antonio Ortega Yagües. “Concircular Helices and Concircular Surfaces in Euclidean 3-Space $\mathbb{R}^{3}$”. Hacettepe Journal of Mathematics and Statistics 52, sy. 4 (Ağustos 2023): 995-1005. https://doi.org/10.15672/hujms.1187220.
EndNote Lucas P, Ortega Yagües JA (01 Ağustos 2023) Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics 52 4 995–1005.
IEEE P. Lucas ve J. A. Ortega Yagües, “Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$”, Hacettepe Journal of Mathematics and Statistics, c. 52, sy. 4, ss. 995–1005, 2023, doi: 10.15672/hujms.1187220.
ISNAD Lucas, Pascual - Ortega Yagües, José Antonio. “Concircular Helices and Concircular Surfaces in Euclidean 3-Space $\mathbb{R}^{3}$”. Hacettepe Journal of Mathematics and Statistics 52/4 (Ağustos 2023), 995-1005. https://doi.org/10.15672/hujms.1187220.
JAMA Lucas P, Ortega Yagües JA. Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics. 2023;52:995–1005.
MLA Lucas, Pascual ve José Antonio Ortega Yagües. “Concircular Helices and Concircular Surfaces in Euclidean 3-Space $\mathbb{R}^{3}$”. Hacettepe Journal of Mathematics and Statistics, c. 52, sy. 4, 2023, ss. 995-1005, doi:10.15672/hujms.1187220.
Vancouver Lucas P, Ortega Yagües JA. Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):995-1005.