Araştırma Makalesi
BibTex RIS Kaynak Göster

Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces

Yıl 2025, , 115 - 124, 28.02.2025
https://doi.org/10.15672/hujms.1362698

Öz

Let $H$ be a Hilbert space and $\Omega $ a locally compact Hausdorff space endowed with a Radon measure $\mu $ with $\int_{\Omega }1d\mu \left( t\right) =1.$ In this paper we show among others that, if $f$ is continuous differentiable convex on the open interval $I$, $\left( A_{\tau }\right)_{\tau \in \Omega }$ is a continuous field of positive operators in $B\left( H\right) $ with spectra in $ I$ for each $\tau \in \Omega $ and $B$ an operator with spectrum in $I,$ then we have
\begin{align*}
&{\small\operatorname{\small\int}_{\Omega }\left( f^{\prime }\left( A_{\tau }\right) A_{\tau }\right) d\mu \left( \tau \right) \otimes 1-\operatorname{\small\int}_{\Omega }f^{\prime }\left( A_{\tau }\right) d\mu \left( \tau \right) \otimes B}\\
& \geq \int_{\Omega }f\left( A_{\tau }\right) d\mu \left( \tau \right)
\otimes 1-1\otimes f\left( B\right) \\
& \geq \left( \int_{\Omega }A_{\tau }d\mu \left( \tau \right) \otimes
1-\left( 1\otimes B\right) \right) \left( 1\otimes f^{\prime }\left(
B\right) \right)
\end{align*}
and the Hadamard product inequality
\begin{align*}
& {\small\operatorname{\small\int}_{\Omega }\left( f^{\prime }\left( A_{\tau }\right) A_{\tau }\right)
d\mu \left( \tau \right) \circ 1-\operatorname{\small\int}_{\Omega }f^{\prime }\left( A_{\tau
}\right) d\mu \left( \tau \right) \circ B} \\
& \geq \int_{\Omega }f\left( A_{\tau }\right) d\mu \left( \tau \right) \circ
1-1\circ f\left( B\right) \\
& \geq \int_{\Omega }A_{\tau }d\mu \left( \tau \right) \circ f^{\prime
}\left( B\right) -1\circ \left( f^{\prime }\left( B\right) B\right) .
\end{align*}

Kaynakça

  • [1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26, 203-241, 1979.
  • [2] H. Araki and F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (7), 2075-2084, 2000.
  • [3] J. S. Aujla and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Jpn. 42, 265-272, 1995.
  • [4] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn. 41, 531-535, 1995.
  • [5] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • [6] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math. 1 (2), 237-241, 1998.
  • [7] A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc. 101, 520-554, 1961.
  • [8] S.Wada, On some refinement of the Cauchy-Schwarz Inequality, Linear Algebra Appl. 420, 433-440, 2007.
Yıl 2025, , 115 - 124, 28.02.2025
https://doi.org/10.15672/hujms.1362698

Öz

Kaynakça

  • [1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26, 203-241, 1979.
  • [2] H. Araki and F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (7), 2075-2084, 2000.
  • [3] J. S. Aujla and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Jpn. 42, 265-272, 1995.
  • [4] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn. 41, 531-535, 1995.
  • [5] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • [6] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math. 1 (2), 237-241, 1998.
  • [7] A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc. 101, 520-554, 1961.
  • [8] S.Wada, On some refinement of the Cauchy-Schwarz Inequality, Linear Algebra Appl. 420, 433-440, 2007.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Operatör Cebirleri ve Fonksiyonel Analiz, Reel ve Kompleks Fonksiyonlar
Bölüm Matematik
Yazarlar

Sever Dragomır 0000-0003-2902-6805

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 28 Şubat 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Dragomır, S. (2025). Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics, 54(1), 115-124. https://doi.org/10.15672/hujms.1362698
AMA Dragomır S. Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics. Şubat 2025;54(1):115-124. doi:10.15672/hujms.1362698
Chicago Dragomır, Sever. “Tensorial and Hadamard Product Integral Inequalities for Convex Functions of Continuous Fields of Operators in Hilbert Spaces”. Hacettepe Journal of Mathematics and Statistics 54, sy. 1 (Şubat 2025): 115-24. https://doi.org/10.15672/hujms.1362698.
EndNote Dragomır S (01 Şubat 2025) Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics 54 1 115–124.
IEEE S. Dragomır, “Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, ss. 115–124, 2025, doi: 10.15672/hujms.1362698.
ISNAD Dragomır, Sever. “Tensorial and Hadamard Product Integral Inequalities for Convex Functions of Continuous Fields of Operators in Hilbert Spaces”. Hacettepe Journal of Mathematics and Statistics 54/1 (Şubat 2025), 115-124. https://doi.org/10.15672/hujms.1362698.
JAMA Dragomır S. Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54:115–124.
MLA Dragomır, Sever. “Tensorial and Hadamard Product Integral Inequalities for Convex Functions of Continuous Fields of Operators in Hilbert Spaces”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, 2025, ss. 115-24, doi:10.15672/hujms.1362698.
Vancouver Dragomır S. Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54(1):115-24.