Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, , 173 - 179, 28.02.2025
https://doi.org/10.15672/hujms.1367438

Öz

Proje Numarası

This work was partially supported by NSFC (12126415,12301026), Jiangxi Provincial Natural Science Foundation (20232BAB211006), and the Science and Technology Research Project of Jiangxi Education Department (GJJ2200841).

Kaynakça

  • [1] S. Chowla, I. N. Herstein and W. R. Scott, The solutions of $x^d=1$ in symmetric groups, Norske Vid. Selsk. Forh. Trondheim 25, 29-31, 1952.
  • [2] S. P. Glasby, C. E. Praeger and W. R. Unger, Most permutations power to a cycle of small prime length, Proc. Edinburgh Math. Soc. 64, 234-246, 2021.
  • [3] E. Jacobsthal, Sur le nombre d’´el´ements du groupe sym´etrique Sn dont l’ordre est un nombre premier, Norske Vid. Selsk. Forh. Trondheim 21 (12), 49-51, 1949.
  • [4] L. Moser and M. Wyman, On solutions of $x^d=1$ in symmetric groups, Canad. J. Math. 7, 159-168, 1955.
  • [5] A. C. Niemeyer, T. Popiel and C. E. Praeger, On proportions of pre-involutions in finite classical groups, J. Algebra 324, 1016-1043, 2010.
  • [6] A. C. Niemeyer, C. E. Praeger and A. Seress, Estimation problems and randomised group algorithms, In Probabilistic Group Theory, Combinatorics and Computing, Editors: Alla Detinko, Dane Flannery and Eamonn O’Brien. Lecture Notes in Mathematics, Volume 2070 Chapter 2, 35-82 Springer, Berlin,2020.
  • [7] C. E. Praeger and E. Suleiman, On the proportion of elements of prime order in finite symmetric groups, Int. J. Group Theory 13, 251-256, 2024.

On the proportion of elements of order $2p$ in finite symmetric groups

Yıl 2025, , 173 - 179, 28.02.2025
https://doi.org/10.15672/hujms.1367438

Öz

This is one of a series of papers that aims to give an explicit upper bound on the proportion of elements of order a product of two primes in finite symmetric groups. This one presents such a bound for the elements with order twice a prime.

Proje Numarası

This work was partially supported by NSFC (12126415,12301026), Jiangxi Provincial Natural Science Foundation (20232BAB211006), and the Science and Technology Research Project of Jiangxi Education Department (GJJ2200841).

Kaynakça

  • [1] S. Chowla, I. N. Herstein and W. R. Scott, The solutions of $x^d=1$ in symmetric groups, Norske Vid. Selsk. Forh. Trondheim 25, 29-31, 1952.
  • [2] S. P. Glasby, C. E. Praeger and W. R. Unger, Most permutations power to a cycle of small prime length, Proc. Edinburgh Math. Soc. 64, 234-246, 2021.
  • [3] E. Jacobsthal, Sur le nombre d’´el´ements du groupe sym´etrique Sn dont l’ordre est un nombre premier, Norske Vid. Selsk. Forh. Trondheim 21 (12), 49-51, 1949.
  • [4] L. Moser and M. Wyman, On solutions of $x^d=1$ in symmetric groups, Canad. J. Math. 7, 159-168, 1955.
  • [5] A. C. Niemeyer, T. Popiel and C. E. Praeger, On proportions of pre-involutions in finite classical groups, J. Algebra 324, 1016-1043, 2010.
  • [6] A. C. Niemeyer, C. E. Praeger and A. Seress, Estimation problems and randomised group algorithms, In Probabilistic Group Theory, Combinatorics and Computing, Editors: Alla Detinko, Dane Flannery and Eamonn O’Brien. Lecture Notes in Mathematics, Volume 2070 Chapter 2, 35-82 Springer, Berlin,2020.
  • [7] C. E. Praeger and E. Suleiman, On the proportion of elements of prime order in finite symmetric groups, Int. J. Group Theory 13, 251-256, 2024.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Grup Teorisi ve Genellemeler
Bölüm Matematik
Yazarlar

Hailin Liu 0000-0002-7232-7374

Liping Zhong 0009-0004-0290-131X

Proje Numarası This work was partially supported by NSFC (12126415,12301026), Jiangxi Provincial Natural Science Foundation (20232BAB211006), and the Science and Technology Research Project of Jiangxi Education Department (GJJ2200841).
Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 28 Şubat 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Liu, H., & Zhong, L. (2025). On the proportion of elements of order $2p$ in finite symmetric groups. Hacettepe Journal of Mathematics and Statistics, 54(1), 173-179. https://doi.org/10.15672/hujms.1367438
AMA Liu H, Zhong L. On the proportion of elements of order $2p$ in finite symmetric groups. Hacettepe Journal of Mathematics and Statistics. Şubat 2025;54(1):173-179. doi:10.15672/hujms.1367438
Chicago Liu, Hailin, ve Liping Zhong. “On the Proportion of Elements of Order $2p$ in Finite Symmetric Groups”. Hacettepe Journal of Mathematics and Statistics 54, sy. 1 (Şubat 2025): 173-79. https://doi.org/10.15672/hujms.1367438.
EndNote Liu H, Zhong L (01 Şubat 2025) On the proportion of elements of order $2p$ in finite symmetric groups. Hacettepe Journal of Mathematics and Statistics 54 1 173–179.
IEEE H. Liu ve L. Zhong, “On the proportion of elements of order $2p$ in finite symmetric groups”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, ss. 173–179, 2025, doi: 10.15672/hujms.1367438.
ISNAD Liu, Hailin - Zhong, Liping. “On the Proportion of Elements of Order $2p$ in Finite Symmetric Groups”. Hacettepe Journal of Mathematics and Statistics 54/1 (Şubat 2025), 173-179. https://doi.org/10.15672/hujms.1367438.
JAMA Liu H, Zhong L. On the proportion of elements of order $2p$ in finite symmetric groups. Hacettepe Journal of Mathematics and Statistics. 2025;54:173–179.
MLA Liu, Hailin ve Liping Zhong. “On the Proportion of Elements of Order $2p$ in Finite Symmetric Groups”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, 2025, ss. 173-9, doi:10.15672/hujms.1367438.
Vancouver Liu H, Zhong L. On the proportion of elements of order $2p$ in finite symmetric groups. Hacettepe Journal of Mathematics and Statistics. 2025;54(1):173-9.