Araştırma Makalesi
BibTex RIS Kaynak Göster

Differentiating under $q$-integral sign

Yıl 2025, , 921 - 927, 24.06.2025
https://doi.org/10.15672/hujms.1406520

Öz

The Leibniz integral rule enables us to interchange the order of differentiation and integration under some differentiability conditions on the functions. It can be very useful in the computing the exact value of certain integrals. In this paper, we will present analogs of such rule for $q$-integrals with functional borders and their properties.

Destekleyen Kurum

Ministry of Education, Science and Technological Development of the Republic of Serbia.

Kaynakça

  • [1] G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge, England, Cambridge University Press, 2004.
  • [2] R.P. Feynman, A Different Set of Tools, In ’Surely You’re Joking, Mr. Feynman!’: Adventures of a Curious Character, New York, W. W. Norton, 1997.
  • [3] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed. Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, 2004.
  • [4] W. Hahn, Lineare Geometrische Differenzengleichungen, Berichte der Mathematisch- Statistischen Section im Forschungszentrum Graz, 1981.
  • [5] I.T. Huseynov, A. Ahmadova and N.I. Mahmudov, Fractional Leibniz integral rules for Riemann–Liouville and Caputo fractional derivatives and their applications, arXiv:2012.11360v1 [math.CA].
  • [6] V. Kac and P. Cheung, Quantum Calculus, Springer–Verlag, New York, 2002.
  • [7] W. Koepf, Hypergeometric Summation, Advanced Lectures in Mathematics, Vieweg, Braunschweig/Wiesbaden, 1998.
  • [8] P.M. Rajkovic, M.S. Stankovic and S.D. Marinkovic, Mean value theorems in q–calculus, Matematicki vesnik 54, 171–178, 2002.
  • [9] F.S. Woods, Differentiation of a Definite Integral, Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics, 141–144, Boston, Ginn, 1926.
Yıl 2025, , 921 - 927, 24.06.2025
https://doi.org/10.15672/hujms.1406520

Öz

Kaynakça

  • [1] G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge, England, Cambridge University Press, 2004.
  • [2] R.P. Feynman, A Different Set of Tools, In ’Surely You’re Joking, Mr. Feynman!’: Adventures of a Curious Character, New York, W. W. Norton, 1997.
  • [3] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed. Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, 2004.
  • [4] W. Hahn, Lineare Geometrische Differenzengleichungen, Berichte der Mathematisch- Statistischen Section im Forschungszentrum Graz, 1981.
  • [5] I.T. Huseynov, A. Ahmadova and N.I. Mahmudov, Fractional Leibniz integral rules for Riemann–Liouville and Caputo fractional derivatives and their applications, arXiv:2012.11360v1 [math.CA].
  • [6] V. Kac and P. Cheung, Quantum Calculus, Springer–Verlag, New York, 2002.
  • [7] W. Koepf, Hypergeometric Summation, Advanced Lectures in Mathematics, Vieweg, Braunschweig/Wiesbaden, 1998.
  • [8] P.M. Rajkovic, M.S. Stankovic and S.D. Marinkovic, Mean value theorems in q–calculus, Matematicki vesnik 54, 171–178, 2002.
  • [9] F.S. Woods, Differentiation of a Definite Integral, Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics, 141–144, Boston, Ginn, 1926.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Reel ve Kompleks Fonksiyonlar, Matematiksel Yöntemler ve Özel Fonksiyonlar
Bölüm Matematik
Yazarlar

Predrag Rajković 0000-0002-2914-0985

Sladjana D. Marinkovic 0000-0002-7752-4393

Erken Görünüm Tarihi 27 Ocak 2025
Yayımlanma Tarihi 24 Haziran 2025
Gönderilme Tarihi 18 Aralık 2023
Kabul Tarihi 19 Ağustos 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Rajković, P., & Marinkovic, S. D. (2025). Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics, 54(3), 921-927. https://doi.org/10.15672/hujms.1406520
AMA Rajković P, Marinkovic SD. Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics. Haziran 2025;54(3):921-927. doi:10.15672/hujms.1406520
Chicago Rajković, Predrag, ve Sladjana D. Marinkovic. “Differentiating under $q$-Integral Sign”. Hacettepe Journal of Mathematics and Statistics 54, sy. 3 (Haziran 2025): 921-27. https://doi.org/10.15672/hujms.1406520.
EndNote Rajković P, Marinkovic SD (01 Haziran 2025) Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics 54 3 921–927.
IEEE P. Rajković ve S. D. Marinkovic, “Differentiating under $q$-integral sign”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, ss. 921–927, 2025, doi: 10.15672/hujms.1406520.
ISNAD Rajković, Predrag - Marinkovic, Sladjana D. “Differentiating under $q$-Integral Sign”. Hacettepe Journal of Mathematics and Statistics 54/3 (Haziran 2025), 921-927. https://doi.org/10.15672/hujms.1406520.
JAMA Rajković P, Marinkovic SD. Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics. 2025;54:921–927.
MLA Rajković, Predrag ve Sladjana D. Marinkovic. “Differentiating under $q$-Integral Sign”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, 2025, ss. 921-7, doi:10.15672/hujms.1406520.
Vancouver Rajković P, Marinkovic SD. Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):921-7.