Araştırma Makalesi
BibTex RIS Kaynak Göster

On products of idempotents and nilpotents

Yıl 2025, , 807 - 821, 24.06.2025
https://doi.org/10.15672/hujms.1413424

Öz

This article studies the ring structure arising from products of idempotents and nilpotents. Thus the argument is concerned essentially with the one-sided IQNN property of rings. We first prove that if the $2$ by $2$ full matrix ring over a principal ideal domain $F$ of characteristic zero is right IQNN then $F$ contains infinitely many non-integer rational numbers; and that the concepts of right IQNN and right quasi-Abelian are independent of each other. We next introduce a ring property, called right IAN, as a generalization of both right IQNN and right quasi-Abelian; and provide several kinds of methods to construct right IAN rings. In the procedure, we also show that the right IQNN and right IAN do not go up to polynomial rings.

Kaynakça

  • [1] H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory. 2, 201–207, 1999.
  • [2] E.-K. Cho, T.K. Kwak, Y. Lee, Z. Piao and Y. Seo, A structure of noncentral idempotents, Bull. Korean Math. Soc. 55, 25–40, 2018.
  • [3] A.J. Diesl, Nil clean rings, J. Algebra 383, 197–211, 2013.
  • [4] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38, 85–88, 1932.
  • [5] G. Ehrlich, Unit-regular rings, Portugal Math. 27, 209–212, 1968.
  • [6] K.E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75, 512–514, 1966.
  • [7] K.R. Goodearl, Von Neumann Regular Rings, London/UK, Pitman Publishing Limited, 1979.
  • [8] J. Huang, T.K. Kwak, Y. Lee and Z. Piao, Structure of idempotents in polynomial rings and matrix rings, Bull. Korean Math. Soc. 60, 1321–1334, 2023.
  • [9] C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167, 37–52, 2002.
  • [10] N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223, 477–488, 2000.
  • [11] T.K. Kwak, S.I. Lee and Y. Lee, Quasi-normality of idempotents on nilpotents, Hacet. J. Math. Stat. 48, 1744–1760, 2019.
  • [12] J. Lambek, Lectures on Rings and Modules, Waltham/USA, Blaisdell Publishing Company, 1966.
  • [13] W.K. Nicholson and Y. Zhou, Clean general rings, J. Algebra 291, 297–311, 2005.
Yıl 2025, , 807 - 821, 24.06.2025
https://doi.org/10.15672/hujms.1413424

Öz

Kaynakça

  • [1] H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory. 2, 201–207, 1999.
  • [2] E.-K. Cho, T.K. Kwak, Y. Lee, Z. Piao and Y. Seo, A structure of noncentral idempotents, Bull. Korean Math. Soc. 55, 25–40, 2018.
  • [3] A.J. Diesl, Nil clean rings, J. Algebra 383, 197–211, 2013.
  • [4] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38, 85–88, 1932.
  • [5] G. Ehrlich, Unit-regular rings, Portugal Math. 27, 209–212, 1968.
  • [6] K.E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75, 512–514, 1966.
  • [7] K.R. Goodearl, Von Neumann Regular Rings, London/UK, Pitman Publishing Limited, 1979.
  • [8] J. Huang, T.K. Kwak, Y. Lee and Z. Piao, Structure of idempotents in polynomial rings and matrix rings, Bull. Korean Math. Soc. 60, 1321–1334, 2023.
  • [9] C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167, 37–52, 2002.
  • [10] N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223, 477–488, 2000.
  • [11] T.K. Kwak, S.I. Lee and Y. Lee, Quasi-normality of idempotents on nilpotents, Hacet. J. Math. Stat. 48, 1744–1760, 2019.
  • [12] J. Lambek, Lectures on Rings and Modules, Waltham/USA, Blaisdell Publishing Company, 1966.
  • [13] W.K. Nicholson and Y. Zhou, Clean general rings, J. Algebra 291, 297–311, 2005.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Matematik
Yazarlar

Hongying Chen 0000-0002-1925-2158

Huang Juan 0000-0003-4447-5174

Tai Keun Kwak 0000-0001-6316-8650

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 24 Haziran 2025
Gönderilme Tarihi 4 Ocak 2024
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Chen, H., Juan, H., & Kwak, T. K. (2025). On products of idempotents and nilpotents. Hacettepe Journal of Mathematics and Statistics, 54(3), 807-821. https://doi.org/10.15672/hujms.1413424
AMA Chen H, Juan H, Kwak TK. On products of idempotents and nilpotents. Hacettepe Journal of Mathematics and Statistics. Haziran 2025;54(3):807-821. doi:10.15672/hujms.1413424
Chicago Chen, Hongying, Huang Juan, ve Tai Keun Kwak. “On Products of Idempotents and Nilpotents”. Hacettepe Journal of Mathematics and Statistics 54, sy. 3 (Haziran 2025): 807-21. https://doi.org/10.15672/hujms.1413424.
EndNote Chen H, Juan H, Kwak TK (01 Haziran 2025) On products of idempotents and nilpotents. Hacettepe Journal of Mathematics and Statistics 54 3 807–821.
IEEE H. Chen, H. Juan, ve T. K. Kwak, “On products of idempotents and nilpotents”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, ss. 807–821, 2025, doi: 10.15672/hujms.1413424.
ISNAD Chen, Hongying vd. “On Products of Idempotents and Nilpotents”. Hacettepe Journal of Mathematics and Statistics 54/3 (Haziran 2025), 807-821. https://doi.org/10.15672/hujms.1413424.
JAMA Chen H, Juan H, Kwak TK. On products of idempotents and nilpotents. Hacettepe Journal of Mathematics and Statistics. 2025;54:807–821.
MLA Chen, Hongying vd. “On Products of Idempotents and Nilpotents”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, 2025, ss. 807-21, doi:10.15672/hujms.1413424.
Vancouver Chen H, Juan H, Kwak TK. On products of idempotents and nilpotents. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):807-21.