Asymptotic formulae for modified Bernstein operators based on regular summability methods
Yıl 2025,
, 958 - 971, 24.06.2025
Meryem Ece Alemdar
,
Oktay Duman
Öz
In this paper, we get new Voronovskaja-type asymptotic formulae for modified Bernstein operators by using regular summability methods. We also display some significant special cases of our results including the methods of Cesàro summability, Riesz summability, Abel summability and Borel summability. At the end, we also discuss the similar results for the Kantorovich version of the operators.
Kaynakça
- [1] M. E. Alemdar and O. Duman, General summability methods in the approximation by
Bernstein-Chlodovsky operators, Numer. Funct. Anal. Optim. 42 (5), 497–509, 2021.
- [2] I. Aslan and O. Duman, Approximation by nonlinear integral operators via summability
process, Math. Nachr. 293 (3), 430–448, 2020.
- [3] O. G. Atlihan and C. Orhan, Summation process of positive linear operators, Comput.
Math. Appl. 56 (5), 1188–1195, 2008.
- [4] S. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités
(Proof of the theorem of Weierstrass based on the calculus of probabilities),
Comm. Kharkov Math. Soc. 13, 1–2, 1912.
- [5] R. Bojanić and F. H. Chêng, Estimates for the rate of approximation of functions
of bounded variation by Hermite-Fejér polynomials, Second Edmonton Conference on
Approximation Theory (Edmonton, Alta., 1982), CMS Conf. Proc., 3, 5–17, 1983.
- [6] J. Boos, Classical and Modern Methods in Summability, Oxford University Press,
Oxford, 2000.
- [7] D. F. Dawson, Matrix summability over certain classes of sequences ordered with
respect to rate of convergence, Pacific J. Math. 24, 51–56, 1968.
- [8] K. Demirci, S. Yildiz and F. Dirik, Approximation via power series method in twodimensional
weighted spaces, Bull. Malays. Math. Sci. Soc. 43 (6), 3871–3883, 2020.
- [9] L. Fejér, Untersuchungen über Fouriersche Reihen, Math. Annalen 58, 51–69, 1904.
- [10] T. Y. Gokcer and O. Duman, Regular summability methods in the approximation by
max-min operators, Fuzzy Sets and Systems, 426, 106–120, 2022.
- [11] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.
- [12] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de
S. Bernstein, I. C. R. Acad. Sci. URSS , 563–568, 1930.
- [13] T. A. Keagy and W. F. Ford, Acceleration by subsequence transformations, Pacific J.
Math. 132 (2), 357–362, 1988.
- [14] G. G. Lorentz, Bernstein Polynomials, Mathematical Expositions, No. 8. University
of Toronto Press, Toronto, 1953.
- [15] R. N. Mohapatra, Quantitative results on almost convergence of a sequence of positive
linear operators, J. Approx. Theory 20 (3), 239–250, 1977.
- [16] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4
(1-4), 511–518, 1997.
- [17] I. Sakaoglu and C. Orhan, Strong summation process in Lp spaces, Nonlinear Anal.
86, 89–94, 2013.
- [18] D. A. Smith and W. F. Ford, Acceleration of linear and logarithmic convergence,
SIAM J. Numer. Anal. 16 (2), 223–240, 1979.
- [19] E. Tas and T. Yurdakadim, Approximation by positive linear operators in modular
spaces by power series method, Positivity, 21 (4), 1293–1306, 2017.
- [20] M. Unver and C. Orhan, Statistical convergence with respect to power series methods
and applications to approximation theory, Numer. Funct. Anal. Optim. 40 (5), 535–
547, 2019.
- [21] E. Voronovskaja, Détermination de la forme asymptotique d’approximation des fonctions
par les polynômes de M. Bernstein, Dokl. Akad. Nauk SSSR, 79–85, 1932.
- [22] J. Wimp, Sequence Transformations and Their Applications, Math. Sci. Eng. Vol.
154, Academic Press, New York-London, 1981.
Yıl 2025,
, 958 - 971, 24.06.2025
Meryem Ece Alemdar
,
Oktay Duman
Kaynakça
- [1] M. E. Alemdar and O. Duman, General summability methods in the approximation by
Bernstein-Chlodovsky operators, Numer. Funct. Anal. Optim. 42 (5), 497–509, 2021.
- [2] I. Aslan and O. Duman, Approximation by nonlinear integral operators via summability
process, Math. Nachr. 293 (3), 430–448, 2020.
- [3] O. G. Atlihan and C. Orhan, Summation process of positive linear operators, Comput.
Math. Appl. 56 (5), 1188–1195, 2008.
- [4] S. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités
(Proof of the theorem of Weierstrass based on the calculus of probabilities),
Comm. Kharkov Math. Soc. 13, 1–2, 1912.
- [5] R. Bojanić and F. H. Chêng, Estimates for the rate of approximation of functions
of bounded variation by Hermite-Fejér polynomials, Second Edmonton Conference on
Approximation Theory (Edmonton, Alta., 1982), CMS Conf. Proc., 3, 5–17, 1983.
- [6] J. Boos, Classical and Modern Methods in Summability, Oxford University Press,
Oxford, 2000.
- [7] D. F. Dawson, Matrix summability over certain classes of sequences ordered with
respect to rate of convergence, Pacific J. Math. 24, 51–56, 1968.
- [8] K. Demirci, S. Yildiz and F. Dirik, Approximation via power series method in twodimensional
weighted spaces, Bull. Malays. Math. Sci. Soc. 43 (6), 3871–3883, 2020.
- [9] L. Fejér, Untersuchungen über Fouriersche Reihen, Math. Annalen 58, 51–69, 1904.
- [10] T. Y. Gokcer and O. Duman, Regular summability methods in the approximation by
max-min operators, Fuzzy Sets and Systems, 426, 106–120, 2022.
- [11] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.
- [12] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de
S. Bernstein, I. C. R. Acad. Sci. URSS , 563–568, 1930.
- [13] T. A. Keagy and W. F. Ford, Acceleration by subsequence transformations, Pacific J.
Math. 132 (2), 357–362, 1988.
- [14] G. G. Lorentz, Bernstein Polynomials, Mathematical Expositions, No. 8. University
of Toronto Press, Toronto, 1953.
- [15] R. N. Mohapatra, Quantitative results on almost convergence of a sequence of positive
linear operators, J. Approx. Theory 20 (3), 239–250, 1977.
- [16] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4
(1-4), 511–518, 1997.
- [17] I. Sakaoglu and C. Orhan, Strong summation process in Lp spaces, Nonlinear Anal.
86, 89–94, 2013.
- [18] D. A. Smith and W. F. Ford, Acceleration of linear and logarithmic convergence,
SIAM J. Numer. Anal. 16 (2), 223–240, 1979.
- [19] E. Tas and T. Yurdakadim, Approximation by positive linear operators in modular
spaces by power series method, Positivity, 21 (4), 1293–1306, 2017.
- [20] M. Unver and C. Orhan, Statistical convergence with respect to power series methods
and applications to approximation theory, Numer. Funct. Anal. Optim. 40 (5), 535–
547, 2019.
- [21] E. Voronovskaja, Détermination de la forme asymptotique d’approximation des fonctions
par les polynômes de M. Bernstein, Dokl. Akad. Nauk SSSR, 79–85, 1932.
- [22] J. Wimp, Sequence Transformations and Their Applications, Math. Sci. Eng. Vol.
154, Academic Press, New York-London, 1981.