The aim of the present article is to analyze $\star$-Ricci-Yamabe solitons on almost coK\"{a}hler manifolds and to characterize them when the potential vector field is pointwise collinear with the Reeb vector field. It is proved that a compact almost coK\"{a}hler manifold admitting $\star$-Ricci-Yamabe soliton under certain restriction on $\star$-scalar curvature is coK\"{a}hler and $\star$-Ricci flat; in addition, that the soliton is steady. $(\kappa, \mu)$-almost coK\"{a}hler manifolds admitting such solitons are also considered and finally, the obtained results are supported by non-trivial examples.
Almost coK\"{a}hler manifold $(\kappa \mu)$-nullity distribution $\star$-Ricci curvature Ricci soliton Yamabe soliton
Birincil Dil | İngilizce |
---|---|
Konular | Cebirsel ve Diferansiyel Geometri |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 27 Ocak 2025 |
Yayımlanma Tarihi | |
Yayımlandığı Sayı | Yıl 2025 Erken Görünüm |