Araştırma Makalesi
BibTex RIS Kaynak Göster

On intrinsic rotational surfaces in the Lorentz-Minkowski space

Yıl 2025, Erken Görünüm, 1 - 24
https://doi.org/10.15672/hujms.1501999

Öz

Spacelike intrinsic rotational surfaces with constant mean curvature in the Lorentz-Minkowski space $\E_1^3$ have been recently investigated by Brander et al., extending the known Smyth's surfaces in Euclidean space. In this paper, we give an approach to the analogue Smyth's surfaces of $\E_1^3$ . Assuming that the surface is intrinsic rotational with coordinates $(u,v)$ and conformal factor $\rho(u)^2$, we replace the constancy of the mean curvature by the property that the Weingarten endomorphism $A$ can be expressed as $\Phi_{-\alpha(v)}\left(\begin{array}{ll}\lambda_1(u)&0\\ 0&\lambda_2(u)\end{array}\right)\Phi_{\alpha(v)}$, where $\Phi_{\alpha(v)}$ is the (Euclidean or hyperbolic) rotation of angle $\alpha(v)$ at each tangent plane and $\lambda_i$ are the principal curvatures. Under these conditions, it is proved that the mean curvature is constant and $\alpha$ is a linear function. This result also covers the case that the surface is timelike. If the mean curvature is zero, we determine all spacelike and timelike intrinsic rotational surfaces with rotational angle $\alpha$. This family of surfaces includes the spacelike and timelike Enneper surfaces.

Kaynakça

  • [1] S. Akamine, J. Cho and Y. Ogata, Analysis of timelike Thomsen surfaces, J. Geom. Anal. 30, 731–761, 2020
Yıl 2025, Erken Görünüm, 1 - 24
https://doi.org/10.15672/hujms.1501999

Öz

Kaynakça

  • [1] S. Akamine, J. Cho and Y. Ogata, Analysis of timelike Thomsen surfaces, J. Geom. Anal. 30, 731–761, 2020
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Matematik
Yazarlar

Seher Kaya 0000-0002-7393-0458

Rafael Lopez 0000-0003-3108-7009

Erken Görünüm Tarihi 11 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 16 Haziran 2024
Kabul Tarihi 13 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Erken Görünüm

Kaynak Göster

APA Kaya, S., & Lopez, R. (2025). On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics1-24. https://doi.org/10.15672/hujms.1501999
AMA Kaya S, Lopez R. On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics. Published online 01 Nisan 2025:1-24. doi:10.15672/hujms.1501999
Chicago Kaya, Seher, ve Rafael Lopez. “On Intrinsic Rotational Surfaces in the Lorentz-Minkowski Space”. Hacettepe Journal of Mathematics and Statistics, Nisan (Nisan 2025), 1-24. https://doi.org/10.15672/hujms.1501999.
EndNote Kaya S, Lopez R (01 Nisan 2025) On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics 1–24.
IEEE S. Kaya ve R. Lopez, “On intrinsic rotational surfaces in the Lorentz-Minkowski space”, Hacettepe Journal of Mathematics and Statistics, ss. 1–24, Nisan 2025, doi: 10.15672/hujms.1501999.
ISNAD Kaya, Seher - Lopez, Rafael. “On Intrinsic Rotational Surfaces in the Lorentz-Minkowski Space”. Hacettepe Journal of Mathematics and Statistics. Nisan 2025. 1-24. https://doi.org/10.15672/hujms.1501999.
JAMA Kaya S, Lopez R. On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics. 2025;:1–24.
MLA Kaya, Seher ve Rafael Lopez. “On Intrinsic Rotational Surfaces in the Lorentz-Minkowski Space”. Hacettepe Journal of Mathematics and Statistics, 2025, ss. 1-24, doi:10.15672/hujms.1501999.
Vancouver Kaya S, Lopez R. On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics. 2025:1-24.