Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Erken Görünüm, 1 - 11
https://doi.org/10.15672/hujms.1519536

Öz

Kaynakça

  • 1] M. O. Albertson, The irregularity of a graph, Ars Combin. 46, 219-225, 1997.

More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index

Yıl 2025, Erken Görünüm, 1 - 11
https://doi.org/10.15672/hujms.1519536

Öz

The representation of an edge of a graph in a 2-dimensional coordinate system (shown in Fig. 1) made it possible to get a geometric interpretation of several earlier proposed vertex-degree-based graph indices. In particular, the sum of sine, cosine, and secant of the angle α (shown in Fig. 1) over all edges of the underlying graph yields, respectively, the second Sombor, symmetric division deg, and inverse symmetric division deg indices. Analogous trigonometric relations for the cosecant and cotangent of α are not possible. Therefore, the only remaining such relation is for the tangent of α, resulting in a new vertex-degree-based topological index, the tangent Sombor index, Tan.
In this paper, the basic properties of Tan are established. Connected graphs and trees reaching extremal Tan-values are characterized. Inequalities between Tan and other graph indices are established. The chemical usefulness of Tan in terms of structure sensitivity, abruptness, degeneracy, and correlation with some physicochemical properties of octane isomers and other indices is investigated.

Teşekkür

The authors would like to present sincere thanks to the editor and the referees. Best regards.

Kaynakça

  • 1] M. O. Albertson, The irregularity of a graph, Ars Combin. 46, 219-225, 1997.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Matematik
Yazarlar

Mert Sinan Oz 0000-0002-6206-0362

İvan Gutman 0000-0001-9681-1550

Erken Görünüm Tarihi 24 Haziran 2025
Yayımlanma Tarihi
Gönderilme Tarihi 20 Temmuz 2024
Kabul Tarihi 24 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Erken Görünüm

Kaynak Göster

APA Oz, M. S., & Gutman, İ. (2025). More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index. Hacettepe Journal of Mathematics and Statistics1-11. https://doi.org/10.15672/hujms.1519536
AMA Oz MS, Gutman İ. More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index. Hacettepe Journal of Mathematics and Statistics. Published online 01 Haziran 2025:1-11. doi:10.15672/hujms.1519536
Chicago Oz, Mert Sinan, ve İvan Gutman. “More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index”. Hacettepe Journal of Mathematics and Statistics, Haziran (Haziran 2025), 1-11. https://doi.org/10.15672/hujms.1519536.
EndNote Oz MS, Gutman İ (01 Haziran 2025) More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index. Hacettepe Journal of Mathematics and Statistics 1–11.
IEEE M. S. Oz ve İ. Gutman, “More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index”, Hacettepe Journal of Mathematics and Statistics, ss. 1–11, Haziran 2025, doi: 10.15672/hujms.1519536.
ISNAD Oz, Mert Sinan - Gutman, İvan. “More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index”. Hacettepe Journal of Mathematics and Statistics. Haziran 2025. 1-11. https://doi.org/10.15672/hujms.1519536.
JAMA Oz MS, Gutman İ. More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index. Hacettepe Journal of Mathematics and Statistics. 2025;:1–11.
MLA Oz, Mert Sinan ve İvan Gutman. “More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index”. Hacettepe Journal of Mathematics and Statistics, 2025, ss. 1-11, doi:10.15672/hujms.1519536.
Vancouver Oz MS, Gutman İ. More Geometric Studies of Vertex-Degree-Based Graph Indices–Tangent Sombor Index. Hacettepe Journal of Mathematics and Statistics. 2025:1-11.