Human Resource Development Group, CSIR, India, through NET-JRF and the grant number is 09/0285(12636)/2021-EMR-I.
In this paper, we introduce and characterize the rough $f^g$-statistical limit set, minimal $f^g$-statistical convergence degree, and minimal $f^g$-statistical Cauchy degree of a sequence in an arbitrary normed space. We clarify these concepts for normed spaces of any dimension and explore their properties and relationships. Our findings offer a new perspective that differs from some established results.
rough $f^g$-statistical convergence rough $f^g$-statistical Cauchy sequence rough $f^g$-statistical limit set minimal $f^g$-statistical convergence degree minimal $f^g$-statistical Cauchy degree
Human Resource Development Group, CSIR, India, through NET-JRF and the grant number is 09/0285(12636)/2021-EMR-I.
Birincil Dil | İngilizce |
---|---|
Konular | Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Matematik |
Yazarlar | |
Proje Numarası | Human Resource Development Group, CSIR, India, through NET-JRF and the grant number is 09/0285(12636)/2021-EMR-I. |
Erken Görünüm Tarihi | 11 Nisan 2025 |
Yayımlanma Tarihi | |
Gönderilme Tarihi | 21 Kasım 2024 |
Kabul Tarihi | 28 Şubat 2025 |
Yayımlandığı Sayı | Yıl 2025 Erken Görünüm |