In this paper, we introduce the concept of strongly completely monotonic functions on time scales and explore several properties of these functions. We then present key results that are applied to analyze the cases for continuous, discrete, and quantum time scales. As applications, we prove that the Gauss hypergeometric functions $F(a,b;c;z)$ and the confluent hypergeometric functions of the first kind $M(a,c,z)$ are absolutely monotonic, while the confluent hypergeometric functions of the second kind $U(a,b;z)$ are both strongly completely monotonic and completely monotonic.
Time scale Strongly completely monotonic Absolutely monotonic Completely monotonic Hypergeometric functions
Birincil Dil | İngilizce |
---|---|
Konular | Reel ve Kompleks Fonksiyonlar |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 11 Nisan 2025 |
Yayımlanma Tarihi | |
Gönderilme Tarihi | 8 Aralık 2024 |
Kabul Tarihi | 28 Şubat 2025 |
Yayımlandığı Sayı | Yıl 2025 Erken Görünüm |