Drawing from recent advancements in the study of m-isometric and n-symmetric
completely positive operators on Hilbert spaces, this paper introduces the concept of (m; n)-
isosymmetric multivariable operators. This new class of operators serves as a generalization of
both m-isometric and n-isosymmetric multioperators. We explore the fundamental properties of
these operators, demonstrating that if R 2 B(d)(H) is an (m:n)-isosymmetric multioperator and
Q 2 B(d)(H) is a q-nilpotent multioperators, then the sum R + Q is an (m + 2q 2; n + 2q 2)-
isosymmetric multioperator under appropriate conditions. Additionally, we present results concerning
the joint approximate spectrum of (m; n)-isosymmetric multioperators.
Hilbert space m-isometry n-isosymmetric (m; n)-isosymmetric.
Birincil Dil | İngilizce |
---|---|
Konular | Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 24 Haziran 2025 |
Yayımlanma Tarihi | |
Gönderilme Tarihi | 12 Aralık 2024 |
Kabul Tarihi | 10 Mayıs 2025 |
Yayımlandığı Sayı | Yıl 2025 Erken Görünüm |