Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 49 Sayı: 1, 19 - 29, 06.02.2020
https://doi.org/10.15672/HJMS.2018.648

Öz

Kaynakça

  • [1] G. Abrams, Morita equivalence for rings with local units, Commun. Algebra, 11, 801–837, 1983.
  • [2] P.N. Ánh and L.Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11, 1–16, 1987.
  • [3] B. Banaschewski, Functors into categories of M-sets, Abh. Math. Sem. Univ. Ham- burg, 38, 49–64, 1972.
  • [4] K.R. Fuller, Density and equivalence, J. Algebra 29, 528–550, 1974.
  • [5] J.L. García and L.Marín, Rings having a Morita-like equivalence, Commun. Algebra, 27, 665–680, 1999.
  • [6] J.M. Howie, Fundamentals of semigroup theory, Clarendon press, Oxford, 1995.
  • [7] M. Kilp, U. Knauer and A.V. Mikhalev, Monoids Acts and Categories, Degruyter Expositions in Mathematics, 2000.
  • [8] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3, 359–370, 1972.
  • [9] V. Laan and L. Márki, Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 215, 2538–2546, 2011.
  • [10] V. Laan and L. Márki, Morita invariants for semigroups with local units, Monatsh. Math. 166, 441–451, 2012.
  • [11] V. Laan and L. Márki, Fair semigroups and Morita equivalence, Semigroup Forum, 92, 633–644, 2016.
  • [12] M.V. Lawson, Morita equivalence of semigroups with local units, J. Pure Appl. Alge- bra 215, 455–470, 2011.
  • [13] H. Liu, Morita equivalence based on Morita context for arbitrary semigroups, Hacet. J. Math. Stat. 45 (4), 1083–1090, 2016.
  • [14] B.Y. Ouyang and W.T. Tong, Morita context and Morita-like equivalence for the xst-rings, Acta Math. Sinica (English Series), 19, 371–380, 2003.
  • [15] B.Y. Ouyang, L.R. Zhou and W.T. Tong, Characterizations of Morita-like Equiva- lences for right xst-rings, Algebra Colloquium, 14, 85–95, 2007.
  • [16] S. Talwar, Morita equivalence for semigroups, J. Aust. Math. Soc. (Series A), 59, 81–111, 1995.
  • [17] Y.H. Xu, K.P. Shum and R.F. Turner-Smith, Morita-like equivalence of infinite matrix subrings, J. Algebra, 159, 423–435, 1993.

Morita-like equivalence for fair semigroups

Yıl 2020, Cilt: 49 Sayı: 1, 19 - 29, 06.02.2020
https://doi.org/10.15672/HJMS.2018.648

Öz

In this paper, we mainly investigate Morita-like equivalence and Morita context for right fair semigroups. If two right fair semigroups $S$ and $T$ are Morita-like equivalent, that is, there is a category equivalence $F:US-Act\rightleftharpoons:UT-Act:G,$  we characterize the two functors $F$ and $G$ using $Hom$ functor and tense product functor. Also, we investigate Morita context for right fair semigroups and obtain equivalence between two right unitary act categories.

Kaynakça

  • [1] G. Abrams, Morita equivalence for rings with local units, Commun. Algebra, 11, 801–837, 1983.
  • [2] P.N. Ánh and L.Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11, 1–16, 1987.
  • [3] B. Banaschewski, Functors into categories of M-sets, Abh. Math. Sem. Univ. Ham- burg, 38, 49–64, 1972.
  • [4] K.R. Fuller, Density and equivalence, J. Algebra 29, 528–550, 1974.
  • [5] J.L. García and L.Marín, Rings having a Morita-like equivalence, Commun. Algebra, 27, 665–680, 1999.
  • [6] J.M. Howie, Fundamentals of semigroup theory, Clarendon press, Oxford, 1995.
  • [7] M. Kilp, U. Knauer and A.V. Mikhalev, Monoids Acts and Categories, Degruyter Expositions in Mathematics, 2000.
  • [8] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3, 359–370, 1972.
  • [9] V. Laan and L. Márki, Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 215, 2538–2546, 2011.
  • [10] V. Laan and L. Márki, Morita invariants for semigroups with local units, Monatsh. Math. 166, 441–451, 2012.
  • [11] V. Laan and L. Márki, Fair semigroups and Morita equivalence, Semigroup Forum, 92, 633–644, 2016.
  • [12] M.V. Lawson, Morita equivalence of semigroups with local units, J. Pure Appl. Alge- bra 215, 455–470, 2011.
  • [13] H. Liu, Morita equivalence based on Morita context for arbitrary semigroups, Hacet. J. Math. Stat. 45 (4), 1083–1090, 2016.
  • [14] B.Y. Ouyang and W.T. Tong, Morita context and Morita-like equivalence for the xst-rings, Acta Math. Sinica (English Series), 19, 371–380, 2003.
  • [15] B.Y. Ouyang, L.R. Zhou and W.T. Tong, Characterizations of Morita-like Equiva- lences for right xst-rings, Algebra Colloquium, 14, 85–95, 2007.
  • [16] S. Talwar, Morita equivalence for semigroups, J. Aust. Math. Soc. (Series A), 59, 81–111, 1995.
  • [17] Y.H. Xu, K.P. Shum and R.F. Turner-Smith, Morita-like equivalence of infinite matrix subrings, J. Algebra, 159, 423–435, 1993.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Yang Li 0000-0003-0662-049X

Hongxing Liu 0000-0002-3069-3990

Yayımlanma Tarihi 6 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 49 Sayı: 1

Kaynak Göster

APA Li, Y., & Liu, H. (2020). Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics, 49(1), 19-29. https://doi.org/10.15672/HJMS.2018.648
AMA Li Y, Liu H. Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics. Şubat 2020;49(1):19-29. doi:10.15672/HJMS.2018.648
Chicago Li, Yang, ve Hongxing Liu. “Morita-Like Equivalence for Fair Semigroups”. Hacettepe Journal of Mathematics and Statistics 49, sy. 1 (Şubat 2020): 19-29. https://doi.org/10.15672/HJMS.2018.648.
EndNote Li Y, Liu H (01 Şubat 2020) Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics 49 1 19–29.
IEEE Y. Li ve H. Liu, “Morita-like equivalence for fair semigroups”, Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, ss. 19–29, 2020, doi: 10.15672/HJMS.2018.648.
ISNAD Li, Yang - Liu, Hongxing. “Morita-Like Equivalence for Fair Semigroups”. Hacettepe Journal of Mathematics and Statistics 49/1 (Şubat 2020), 19-29. https://doi.org/10.15672/HJMS.2018.648.
JAMA Li Y, Liu H. Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics. 2020;49:19–29.
MLA Li, Yang ve Hongxing Liu. “Morita-Like Equivalence for Fair Semigroups”. Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, 2020, ss. 19-29, doi:10.15672/HJMS.2018.648.
Vancouver Li Y, Liu H. Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):19-2.