Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 49 Sayı: 6, 1974 - 1987, 08.12.2020
https://doi.org/10.15672/hujms.571016

Öz

Kaynakça

  • [1] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2, 363–368, 1970.
  • [2] H.E. Bell and Y. Li, Duo group rings, J. Pure Appl. Algebra, 209, 833–838, 2007.
  • [3] H.H. Brungs, Three questions on duo rings, Pacific J. Math. 58, 345–349, 1975.
  • [4] A.W. Chatters and C.R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1980.
  • [5] Y.W. Chung and Y. Lee, Structures concerning group of units, J. Korean Math. Soc. 54, 177–191, 2017.
  • [6] R.C. Courter, Finite dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84, 157–161, 1982.
  • [7] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38, 85–88, 1932.
  • [8] E.H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89, 79–91, 1958.
  • [9] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  • [10] K.R. Goodearl and R.B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts 16, Cambridge University Press, Cambridge, 1989.
  • [11] I.N. Herstein and L.W. Small, Nil rings satisfying certain chain conditions, Canad. J. Math. 16, 771–776, 1964.
  • [12] I.N. Herstein and L.W. Small, Addendum to “Nil rings satisfying certain chain conditions", Canad. J. Math. 18, 300–302, 1966.
  • [13] C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 16, 37–52, 2002.
  • [14] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra, 30, 751–761, 2002.
  • [15] S.U. Hwang, Y.C. Jeon and Y. Lee, Structure and topological conditions of NI rings, J. Algebra , 302, 186–199, 2006.
  • [16] H.K. Kim, N.K. Kim and Y. Lee, Weakly duo rings with nil Jacobson radical, J. Korean Math. Soc. 42, 455-468, 2005.
  • [17] C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21, 904–907, 1969.
  • [18] B. Li, On potent rings, Commun. Korean Math. Soc. 23, 161–167, 2008.
  • [19] G. Marks, On 2-primal Ore extensions, Comm. Algebra, 29, 2113–2123, 2001.
  • [20] G. Marks, Duo rings and Ore extensions, J. Algebra, 280, 463–471, 2004.
  • [21] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987.
  • [22] W.K. Nicholson, I-rings, Trans. Amer. Math. Soc. 207, 361–373, 1975.
  • [23] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 , 269–278, 1977.
  • [24] C. Polcino Milies and S.K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • [25] G. Thierrin, On duo rings, Canad. Math. Bull. 3, 167–172, 1960.
  • [26] X. Yao, Weakly right duo rings, Pure Appl. Math. Sci. 21, 19–24, 1985.

One-sided duo property on nilpotents

Yıl 2020, Cilt: 49 Sayı: 6, 1974 - 1987, 08.12.2020
https://doi.org/10.15672/hujms.571016

Öz

We study the structure of nilpotents in relation with a ring property that is near to one-sided  duo rings. Such a property is said to be one-sided nilpotent-duo. We prove the following for a one-sided nilpotent-duo  ring $R$: (i) The set of nilpotents in $R$ forms a subring; (ii) Köthe's conjecture holds for $R$; (iii) the subring generated by the identity and the set of nilpotents in $R$ is a  one-sided  duo ring; (iv) if the polynomial ring $R[x]$ over $R$ is  one-sided  nilpotent-duo then the set of nilpotents in $R$ forms a commutative ring, and $R[x]$ is an NI ring.  Several connections between  one-sided  nilpotent-duo and  one-sided duo are given. The structure of one-sided nilpotent-duo rings is also studied in various situations in ring theory. Especially we investigate several kinds of conditions under which  one-sided  nilpotent-duo rings are NI.

Kaynakça

  • [1] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2, 363–368, 1970.
  • [2] H.E. Bell and Y. Li, Duo group rings, J. Pure Appl. Algebra, 209, 833–838, 2007.
  • [3] H.H. Brungs, Three questions on duo rings, Pacific J. Math. 58, 345–349, 1975.
  • [4] A.W. Chatters and C.R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1980.
  • [5] Y.W. Chung and Y. Lee, Structures concerning group of units, J. Korean Math. Soc. 54, 177–191, 2017.
  • [6] R.C. Courter, Finite dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84, 157–161, 1982.
  • [7] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38, 85–88, 1932.
  • [8] E.H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89, 79–91, 1958.
  • [9] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  • [10] K.R. Goodearl and R.B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts 16, Cambridge University Press, Cambridge, 1989.
  • [11] I.N. Herstein and L.W. Small, Nil rings satisfying certain chain conditions, Canad. J. Math. 16, 771–776, 1964.
  • [12] I.N. Herstein and L.W. Small, Addendum to “Nil rings satisfying certain chain conditions", Canad. J. Math. 18, 300–302, 1966.
  • [13] C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 16, 37–52, 2002.
  • [14] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra, 30, 751–761, 2002.
  • [15] S.U. Hwang, Y.C. Jeon and Y. Lee, Structure and topological conditions of NI rings, J. Algebra , 302, 186–199, 2006.
  • [16] H.K. Kim, N.K. Kim and Y. Lee, Weakly duo rings with nil Jacobson radical, J. Korean Math. Soc. 42, 455-468, 2005.
  • [17] C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21, 904–907, 1969.
  • [18] B. Li, On potent rings, Commun. Korean Math. Soc. 23, 161–167, 2008.
  • [19] G. Marks, On 2-primal Ore extensions, Comm. Algebra, 29, 2113–2123, 2001.
  • [20] G. Marks, Duo rings and Ore extensions, J. Algebra, 280, 463–471, 2004.
  • [21] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987.
  • [22] W.K. Nicholson, I-rings, Trans. Amer. Math. Soc. 207, 361–373, 1975.
  • [23] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 , 269–278, 1977.
  • [24] C. Polcino Milies and S.K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • [25] G. Thierrin, On duo rings, Canad. Math. Bull. 3, 167–172, 1960.
  • [26] X. Yao, Weakly right duo rings, Pure Appl. Math. Sci. 21, 19–24, 1985.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Chan Yong Hong 0000-0003-1984-2841

Hong Kee Kim 0000-0002-4367-1715

Nam Kyun Kim 0000-0002-4419-9045

Tai Keun Kwak 0000-0001-6316-8650

Yang Lee 0000-0002-7572-5191

Yayımlanma Tarihi 8 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 49 Sayı: 6

Kaynak Göster

APA Hong, C. Y., Kim, H. K., Kim, N. K., Kwak, T. K., vd. (2020). One-sided duo property on nilpotents. Hacettepe Journal of Mathematics and Statistics, 49(6), 1974-1987. https://doi.org/10.15672/hujms.571016
AMA Hong CY, Kim HK, Kim NK, Kwak TK, Lee Y. One-sided duo property on nilpotents. Hacettepe Journal of Mathematics and Statistics. Aralık 2020;49(6):1974-1987. doi:10.15672/hujms.571016
Chicago Hong, Chan Yong, Hong Kee Kim, Nam Kyun Kim, Tai Keun Kwak, ve Yang Lee. “One-Sided Duo Property on Nilpotents”. Hacettepe Journal of Mathematics and Statistics 49, sy. 6 (Aralık 2020): 1974-87. https://doi.org/10.15672/hujms.571016.
EndNote Hong CY, Kim HK, Kim NK, Kwak TK, Lee Y (01 Aralık 2020) One-sided duo property on nilpotents. Hacettepe Journal of Mathematics and Statistics 49 6 1974–1987.
IEEE C. Y. Hong, H. K. Kim, N. K. Kim, T. K. Kwak, ve Y. Lee, “One-sided duo property on nilpotents”, Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 6, ss. 1974–1987, 2020, doi: 10.15672/hujms.571016.
ISNAD Hong, Chan Yong vd. “One-Sided Duo Property on Nilpotents”. Hacettepe Journal of Mathematics and Statistics 49/6 (Aralık 2020), 1974-1987. https://doi.org/10.15672/hujms.571016.
JAMA Hong CY, Kim HK, Kim NK, Kwak TK, Lee Y. One-sided duo property on nilpotents. Hacettepe Journal of Mathematics and Statistics. 2020;49:1974–1987.
MLA Hong, Chan Yong vd. “One-Sided Duo Property on Nilpotents”. Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 6, 2020, ss. 1974-87, doi:10.15672/hujms.571016.
Vancouver Hong CY, Kim HK, Kim NK, Kwak TK, Lee Y. One-sided duo property on nilpotents. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):1974-87.