Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 50 Sayı: 1, 216 - 223, 04.02.2021
https://doi.org/10.15672/hujms.685742

Öz

Kaynakça

  • [1] G. Baxter, An analytic problem whose solution follows from a simple algebraic iden- tity, Pacific J. Math. 10, 731–742, 1960.
  • [2] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
  • [3] L. Guo, Properties of free Baxter algebras, Adv. Math. 151, 346–374, 2000.
  • [4] L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150, 117– 149, 2000.
  • [5] L. Guo and B. Zhang, Polylogarithms and multiple zeta values from free Rota-Baxter algebras, Sci. China Math. 53 (9), 2239–2258, 2010.
  • [6] L. Guo, J.-Y. Thibon and H. Yu, Weak composition quasi-symmetric functions, Rota- Baxter algebras and Hopf algebras, Adv. Math. 344, 1–34, 2019.
  • [7] R.Q. Jian, Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements, Lett. Math. Phys. 107, 367–374, 2017.
  • [8] R.Q. Jian and J. Zhang, Rota-Baxter coalgebras, arXiv:1409.3052.
  • [9] T.S. Ma and L.L. Liu, Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra, 64 (5), 968–979, 2016.
  • [10] D.E. Radford, Hopf Algebras, KE Series on Knots and Everything, World Scientific, Vol. 49, New Jersey, 2012.
  • [11] G.C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc. 75 (2), 325–329, 330–334, 1969.
  • [12] E.J. Taft, The order of the antipode of finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA. 68, 2631–2633, 1971.

Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements

Yıl 2021, Cilt: 50 Sayı: 1, 216 - 223, 04.02.2021
https://doi.org/10.15672/hujms.685742

Öz

In this note, we construct Rota-Baxter (coalgebras) bialgebras by (co-)quasi-idempotent elements and prove that every finite dimensional Hopf algebra admits nontrivial Rota-Baxter bialgebra structures and tridendriform bialgebra structures. We give all the forms of (co)-quasi-idempotent elements and related structures of tridendriform (co, bi)algebras and Rota-Baxter (co, bi)algebras on the well-known Sweedler's four-dimensional Hopf algebra.

Kaynakça

  • [1] G. Baxter, An analytic problem whose solution follows from a simple algebraic iden- tity, Pacific J. Math. 10, 731–742, 1960.
  • [2] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
  • [3] L. Guo, Properties of free Baxter algebras, Adv. Math. 151, 346–374, 2000.
  • [4] L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150, 117– 149, 2000.
  • [5] L. Guo and B. Zhang, Polylogarithms and multiple zeta values from free Rota-Baxter algebras, Sci. China Math. 53 (9), 2239–2258, 2010.
  • [6] L. Guo, J.-Y. Thibon and H. Yu, Weak composition quasi-symmetric functions, Rota- Baxter algebras and Hopf algebras, Adv. Math. 344, 1–34, 2019.
  • [7] R.Q. Jian, Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements, Lett. Math. Phys. 107, 367–374, 2017.
  • [8] R.Q. Jian and J. Zhang, Rota-Baxter coalgebras, arXiv:1409.3052.
  • [9] T.S. Ma and L.L. Liu, Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra, 64 (5), 968–979, 2016.
  • [10] D.E. Radford, Hopf Algebras, KE Series on Knots and Everything, World Scientific, Vol. 49, New Jersey, 2012.
  • [11] G.C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc. 75 (2), 325–329, 330–334, 1969.
  • [12] E.J. Taft, The order of the antipode of finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA. 68, 2631–2633, 1971.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Tianshui Ma 0000-0003-1275-7214

Jie Li 0000-0003-3931-7569

Haiyan Yang 0000-0001-6594-8327

Yayımlanma Tarihi 4 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 50 Sayı: 1

Kaynak Göster

APA Ma, T., Li, J., & Yang, H. (2021). Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics, 50(1), 216-223. https://doi.org/10.15672/hujms.685742
AMA Ma T, Li J, Yang H. Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics. Şubat 2021;50(1):216-223. doi:10.15672/hujms.685742
Chicago Ma, Tianshui, Jie Li, ve Haiyan Yang. “Rota-Baxter Bialgebra Structures Arising from (co-)quasi-Idempotent Elements”. Hacettepe Journal of Mathematics and Statistics 50, sy. 1 (Şubat 2021): 216-23. https://doi.org/10.15672/hujms.685742.
EndNote Ma T, Li J, Yang H (01 Şubat 2021) Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics 50 1 216–223.
IEEE T. Ma, J. Li, ve H. Yang, “Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements”, Hacettepe Journal of Mathematics and Statistics, c. 50, sy. 1, ss. 216–223, 2021, doi: 10.15672/hujms.685742.
ISNAD Ma, Tianshui vd. “Rota-Baxter Bialgebra Structures Arising from (co-)quasi-Idempotent Elements”. Hacettepe Journal of Mathematics and Statistics 50/1 (Şubat 2021), 216-223. https://doi.org/10.15672/hujms.685742.
JAMA Ma T, Li J, Yang H. Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics. 2021;50:216–223.
MLA Ma, Tianshui vd. “Rota-Baxter Bialgebra Structures Arising from (co-)quasi-Idempotent Elements”. Hacettepe Journal of Mathematics and Statistics, c. 50, sy. 1, 2021, ss. 216-23, doi:10.15672/hujms.685742.
Vancouver Ma T, Li J, Yang H. Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):216-23.