Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 50 Sayı: 2, 516 - 525, 11.04.2021
https://doi.org/10.15672/hujms.730907

Öz

Kaynakça

  • [1] I. Amin, Y. Ibrahim and M .F. Yousif, $C3$-modules, Algebra Colloq. 22 (4), 655–670, 2015.
  • [2] I. Amin, M.F. Yousif and N. Zeyada, Soc-injective rings and modules, Commun. Algebra, 33, 4229–4250, 2005.
  • [3] F.W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  • [4] K.I. Beidar and W. F. Ke, On essential extensions of direct sums of injective modules, Archiv. Math. 78, 120–123, 2002.
  • [5] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra 420, 39–53, 2014.
  • [6] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
  • [7] E.E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189–209, 1981.
  • [8] J.W. Fisher, Von Neumann regular rings versus V-rings, in: Lect. Notes Pure Appl. Math. 7, 101–119, Dekker, New York, 1974.
  • [9] K.R. Goodearl, Von Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991.
  • [10] J. Hausen, Modules with the summand intersection property, Commun. Alg. 17, 135– 148, 1989.
  • [11] Y. Ibrahim, M.T. Koşan, M. Yousif and T.C. Quynh, Simple-direct-projective modules, Commun. Algebra, 44 (12), 5163–5178, 2014.
  • [12] Y. Ibrahim, T.C. Quynh and M. Yousif, Simple-direct-modules, Commun. Algebra, 45 (8), 3643–3652, 2017.
  • [13] S.H. Mohammed and B.J. Müller, Continous and Discrete Modules, London Math. Soc. LN 147, Cambridge Univ. Press., 1990.
  • [14] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press., 2003.
  • [15] T.C. Quynh and M.T. Koşan, On annihilators and quasi-Frobenius rings, submitted.
  • [16] S. Sahinkaya and J. Trlifaj, Generalized injectivity and approximations, Commun. Algebra, 44 (9), 4047–4055, 2014.
  • [17] G.V. Wilson, Modules with the Direct Summand Intersection Property, Comm. Alg. 14, 21–38, 1986.
  • [18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

Semisimple-direct-injective modules

Yıl 2021, Cilt: 50 Sayı: 2, 516 - 525, 11.04.2021
https://doi.org/10.15672/hujms.730907

Öz

The notion of simple-direct-injective modules which are a generalization of injective modules unifies $C2$ and $C3$-modules. In the present paper, we introduce the notion of the semisimple-direct-injective module which gives a unified viewpoint of $C2$, $C3$, SSP properties and simple-direct-injective modules. It is proved that a ring $R$ is Artinian serial with the Jacobson radical square zero if and only if every semisimple-direct-injective right $R$-module has the SSP and, for any family of simple injective right $R$-modules $\{S_i\}_{\mathcal{I}}$, $\oplus_{\mathcal{I}}S_i$ is injective. We also show that $R$ is a right Noetherian right V-ring if and only if every right $R$-module has a semisimple-direct-injective envelope if and only if every right $R$-module has a semisimple-direct-injective cover.

Kaynakça

  • [1] I. Amin, Y. Ibrahim and M .F. Yousif, $C3$-modules, Algebra Colloq. 22 (4), 655–670, 2015.
  • [2] I. Amin, M.F. Yousif and N. Zeyada, Soc-injective rings and modules, Commun. Algebra, 33, 4229–4250, 2005.
  • [3] F.W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  • [4] K.I. Beidar and W. F. Ke, On essential extensions of direct sums of injective modules, Archiv. Math. 78, 120–123, 2002.
  • [5] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra 420, 39–53, 2014.
  • [6] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
  • [7] E.E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189–209, 1981.
  • [8] J.W. Fisher, Von Neumann regular rings versus V-rings, in: Lect. Notes Pure Appl. Math. 7, 101–119, Dekker, New York, 1974.
  • [9] K.R. Goodearl, Von Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991.
  • [10] J. Hausen, Modules with the summand intersection property, Commun. Alg. 17, 135– 148, 1989.
  • [11] Y. Ibrahim, M.T. Koşan, M. Yousif and T.C. Quynh, Simple-direct-projective modules, Commun. Algebra, 44 (12), 5163–5178, 2014.
  • [12] Y. Ibrahim, T.C. Quynh and M. Yousif, Simple-direct-modules, Commun. Algebra, 45 (8), 3643–3652, 2017.
  • [13] S.H. Mohammed and B.J. Müller, Continous and Discrete Modules, London Math. Soc. LN 147, Cambridge Univ. Press., 1990.
  • [14] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press., 2003.
  • [15] T.C. Quynh and M.T. Koşan, On annihilators and quasi-Frobenius rings, submitted.
  • [16] S. Sahinkaya and J. Trlifaj, Generalized injectivity and approximations, Commun. Algebra, 44 (9), 4047–4055, 2014.
  • [17] G.V. Wilson, Modules with the Direct Summand Intersection Property, Comm. Alg. 14, 21–38, 1986.
  • [18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Adel Abyzov 0000-0002-9809-2091

Muhammet Tamer Koşan 0000-0002-5071-4568

Truong Cong Quynh 0000-0002-0845-0175

Daniel Tapkin 0000-0003-0828-4397

Yayımlanma Tarihi 11 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 50 Sayı: 2

Kaynak Göster

APA Abyzov, A., Koşan, M. T., Quynh, T. C., Tapkin, D. (2021). Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics, 50(2), 516-525. https://doi.org/10.15672/hujms.730907
AMA Abyzov A, Koşan MT, Quynh TC, Tapkin D. Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics. Nisan 2021;50(2):516-525. doi:10.15672/hujms.730907
Chicago Abyzov, Adel, Muhammet Tamer Koşan, Truong Cong Quynh, ve Daniel Tapkin. “Semisimple-Direct-Injective Modules”. Hacettepe Journal of Mathematics and Statistics 50, sy. 2 (Nisan 2021): 516-25. https://doi.org/10.15672/hujms.730907.
EndNote Abyzov A, Koşan MT, Quynh TC, Tapkin D (01 Nisan 2021) Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics 50 2 516–525.
IEEE A. Abyzov, M. T. Koşan, T. C. Quynh, ve D. Tapkin, “Semisimple-direct-injective modules”, Hacettepe Journal of Mathematics and Statistics, c. 50, sy. 2, ss. 516–525, 2021, doi: 10.15672/hujms.730907.
ISNAD Abyzov, Adel vd. “Semisimple-Direct-Injective Modules”. Hacettepe Journal of Mathematics and Statistics 50/2 (Nisan 2021), 516-525. https://doi.org/10.15672/hujms.730907.
JAMA Abyzov A, Koşan MT, Quynh TC, Tapkin D. Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50:516–525.
MLA Abyzov, Adel vd. “Semisimple-Direct-Injective Modules”. Hacettepe Journal of Mathematics and Statistics, c. 50, sy. 2, 2021, ss. 516-25, doi:10.15672/hujms.730907.
Vancouver Abyzov A, Koşan MT, Quynh TC, Tapkin D. Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):516-25.

Cited By