Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 52 Sayı: 4, 983 - 994, 15.08.2023
https://doi.org/10.15672/hujms.1189672

Öz

Kaynakça

  • [1] R. Abraham, J.E Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988.
  • [2] H. Cendra, D.D. Holm, M.J.W. Hoyle and J.E. Marsden, The Maxwell-Vlasov equations in Euler-Poincare form, J. Math. Phys. 39, 3138-3157, 1998.
  • [3] K. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Dover, 1977.
  • [4] H. Gümral, Geometry of plasma dynamics I. Group of canonical diffeomorphisms, Journal of Mathematical Physics 51 (8), 501-523, 2010.
  • [5] Z.R. Iwinski and L.A. Turski, Canonical theories of systems interacting electromagnetically, Lett. Appl. Eng. Sci. 4, 179-191, 1976.
  • [6] J.H. Jeans, The stability of spherical nebula, Philos. Trans. R. Soc. London 199, 1-53, 1902.
  • [7] J. Larsson, An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov-Poisson system, Journal of Plasma Physics 48, 13- 35,1992.
  • [8] F.E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas, Proc. R. Soc. London Ser. A 248, 282-287, 1958.
  • [9] J.E. Marsden and T. Ratiu, Introduction to Symmetry and Mechanics, Springer, 1994.
  • [10] P.J. Olver, Applications of Lie groups to Differential Equations, Springer Science and Business Media LLC, 1986.
  • [11] H. Poincaré, Théorie des tourbillions, Gauthier-Villars, 1890.
  • [12] H. Poincaré, Sur la stabilité de l’équilibre des figures piriformes affectées par une masse fluide en rotation, Philos. Trans. R. Soc. London Ser. A, 333-3 73, 1901.
  • [13] A.A. Vlasov, On vibration properties of electron gas, J. Exp. Theor. Phys. 8 (3), 291-318, 1938.
  • [14] A.A. Vlasov, The vibrational properties of an electron gas, Soviet Physics Uspekhi 10 (6), 721-733, 1968.
  • [15] H. Ye and P.J. Morrison, Action principles for the Vlasov equation, Phys. Fluids B 4, 771-776, 1992.

On the low Lagrangian formulation of Vlasov-Poisson equations

Yıl 2023, Cilt: 52 Sayı: 4, 983 - 994, 15.08.2023
https://doi.org/10.15672/hujms.1189672

Öz

In this work, two problems related with the Low Lagrangian formulation of the Vlasov-Poisson equations are solved. The first problem is related to the space on which the Low Lagrangian is defined. It is shown that the Low Lagrangian is defined on the tangent bundle of the densities of configuration space. The second problem is related to the assumptions which are called Low constraints. It is shown that Low constraints amount to the fact that the Low Lagrangian is invariant under a group action.

Kaynakça

  • [1] R. Abraham, J.E Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988.
  • [2] H. Cendra, D.D. Holm, M.J.W. Hoyle and J.E. Marsden, The Maxwell-Vlasov equations in Euler-Poincare form, J. Math. Phys. 39, 3138-3157, 1998.
  • [3] K. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Dover, 1977.
  • [4] H. Gümral, Geometry of plasma dynamics I. Group of canonical diffeomorphisms, Journal of Mathematical Physics 51 (8), 501-523, 2010.
  • [5] Z.R. Iwinski and L.A. Turski, Canonical theories of systems interacting electromagnetically, Lett. Appl. Eng. Sci. 4, 179-191, 1976.
  • [6] J.H. Jeans, The stability of spherical nebula, Philos. Trans. R. Soc. London 199, 1-53, 1902.
  • [7] J. Larsson, An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov-Poisson system, Journal of Plasma Physics 48, 13- 35,1992.
  • [8] F.E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas, Proc. R. Soc. London Ser. A 248, 282-287, 1958.
  • [9] J.E. Marsden and T. Ratiu, Introduction to Symmetry and Mechanics, Springer, 1994.
  • [10] P.J. Olver, Applications of Lie groups to Differential Equations, Springer Science and Business Media LLC, 1986.
  • [11] H. Poincaré, Théorie des tourbillions, Gauthier-Villars, 1890.
  • [12] H. Poincaré, Sur la stabilité de l’équilibre des figures piriformes affectées par une masse fluide en rotation, Philos. Trans. R. Soc. London Ser. A, 333-3 73, 1901.
  • [13] A.A. Vlasov, On vibration properties of electron gas, J. Exp. Theor. Phys. 8 (3), 291-318, 1938.
  • [14] A.A. Vlasov, The vibrational properties of an electron gas, Soviet Physics Uspekhi 10 (6), 721-733, 1968.
  • [15] H. Ye and P.J. Morrison, Action principles for the Vlasov equation, Phys. Fluids B 4, 771-776, 1992.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Derya Çoksak Er 0000-0001-8298-3247

Yayımlanma Tarihi 15 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 52 Sayı: 4

Kaynak Göster

APA Çoksak Er, D. (2023). On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics, 52(4), 983-994. https://doi.org/10.15672/hujms.1189672
AMA Çoksak Er D. On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics. Ağustos 2023;52(4):983-994. doi:10.15672/hujms.1189672
Chicago Çoksak Er, Derya. “On the Low Lagrangian Formulation of Vlasov-Poisson Equations”. Hacettepe Journal of Mathematics and Statistics 52, sy. 4 (Ağustos 2023): 983-94. https://doi.org/10.15672/hujms.1189672.
EndNote Çoksak Er D (01 Ağustos 2023) On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics 52 4 983–994.
IEEE D. Çoksak Er, “On the low Lagrangian formulation of Vlasov-Poisson equations”, Hacettepe Journal of Mathematics and Statistics, c. 52, sy. 4, ss. 983–994, 2023, doi: 10.15672/hujms.1189672.
ISNAD Çoksak Er, Derya. “On the Low Lagrangian Formulation of Vlasov-Poisson Equations”. Hacettepe Journal of Mathematics and Statistics 52/4 (Ağustos 2023), 983-994. https://doi.org/10.15672/hujms.1189672.
JAMA Çoksak Er D. On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics. 2023;52:983–994.
MLA Çoksak Er, Derya. “On the Low Lagrangian Formulation of Vlasov-Poisson Equations”. Hacettepe Journal of Mathematics and Statistics, c. 52, sy. 4, 2023, ss. 983-94, doi:10.15672/hujms.1189672.
Vancouver Çoksak Er D. On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):983-94.