Let $G$ be a graph of order $p$ without isolated vertices. A bijection $f: V \to \{1,2,3,\dots,p\}$ is called a local distance antimagic labeling, if $w_f(u)\ne w_f(v)$ for every edge $uv$ of $G$, where $w_f(u)=\sum_{x\epsilon N(u)} {f(x)}$. The local distance antimagic chromatic number $\chi_{lda}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local distance antimagic labelings of $G$. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.
local distance antimagic chromatic number join product cycle path null graph
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 14 Nisan 2024 |
Yayımlanma Tarihi | 27 Haziran 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 53 Sayı: 3 |