Araştırma Makalesi
BibTex RIS Kaynak Göster

Local distance antimagic cromatic number of join product of graphs with cycles or paths

Yıl 2024, Cilt: 53 Sayı: 3, 788 - 802, 27.06.2024
https://doi.org/10.15672/hujms.1266085

Öz

Let $G$ be a graph of order $p$ without isolated vertices. A bijection $f: V \to \{1,2,3,\dots,p\}$ is called a local distance antimagic labeling, if $w_f(u)\ne w_f(v)$ for every edge $uv$ of $G$, where $w_f(u)=\sum_{x\epsilon N(u)} {f(x)}$. The local distance antimagic chromatic number $\chi_{lda}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local distance antimagic labelings of $G$. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.

Kaynakça

  • [1] S. Arumugam, D. Froncek, and N. Kamatchi, Distance magic graphs–A survey, J. Indones. Math. Soc. Special Edition, 1126, 2011.
  • [2] S. Arumugam and N. Kamatchi, On $(a, d)$-distance antimagic graphs, Australas. J. Combin. 54, 279–287, 2012.
  • [3] S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Fecňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33, 275–285, 2017.
  • [4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, New York, MacMillan, 1976.
  • [5] J. Bensmail, M. Senhaji and K.S. Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput. Sci. 19 (1), 2017.
  • [6] T. Divya and S. Devi Yamini, Local distance antimagic vertex coloring of graphs, https://arxiv.org/abs/2106.01833v1, 2021.
  • [7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin.1 (Dynamic Surveys),DS6, 2021.
  • [8] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1994.
  • [9] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theor. Comput. Sci. 20 (1), 2018.
  • [10] N. Kamatchi and S. Arumugam, Distance antimagic graphs, J. Combin. Math. Combin. Comput. 84, 6167, 2013.
  • [11] G.C. Lau, H.K. Ng and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36, 1337–1354, 2020.
  • [12] G.C. Lau, W.C. Shiu and H.K. Ng, On local antimagic chromatic number of cyclerelated join graphs, Discuss. Math. Graph Theory, 4 (1), 133–152, 2021.
  • [13] M. Nalliah, Antimagic labeling of Graphs and digraphs, Ph.D Thesis, Kalasalingam University, Tamil Nadu, India, 2013.
  • [14] S. Shaebani, On local antimagic chromatic number of graphs, J. Algebr. Syst. 7 (2), 245–256, 2020.
  • [15] R. Shankar and M. Nalliah, Local vertex antimagic chromatic number of some wheel related graphs, Proyecciones J. Math. 41 (1), 319–334, 2022.
  • [16] V. Priyadharshini and M. Nalliah, Local distance antimagic chromatic number for the union of complete bipartite graphs, Tamkang J. Math. online, https://journals.math.tku.edu.tw/index.php/TKJM/article/view/4804, 2023.
Yıl 2024, Cilt: 53 Sayı: 3, 788 - 802, 27.06.2024
https://doi.org/10.15672/hujms.1266085

Öz

Kaynakça

  • [1] S. Arumugam, D. Froncek, and N. Kamatchi, Distance magic graphs–A survey, J. Indones. Math. Soc. Special Edition, 1126, 2011.
  • [2] S. Arumugam and N. Kamatchi, On $(a, d)$-distance antimagic graphs, Australas. J. Combin. 54, 279–287, 2012.
  • [3] S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Fecňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33, 275–285, 2017.
  • [4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, New York, MacMillan, 1976.
  • [5] J. Bensmail, M. Senhaji and K.S. Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput. Sci. 19 (1), 2017.
  • [6] T. Divya and S. Devi Yamini, Local distance antimagic vertex coloring of graphs, https://arxiv.org/abs/2106.01833v1, 2021.
  • [7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin.1 (Dynamic Surveys),DS6, 2021.
  • [8] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1994.
  • [9] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theor. Comput. Sci. 20 (1), 2018.
  • [10] N. Kamatchi and S. Arumugam, Distance antimagic graphs, J. Combin. Math. Combin. Comput. 84, 6167, 2013.
  • [11] G.C. Lau, H.K. Ng and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36, 1337–1354, 2020.
  • [12] G.C. Lau, W.C. Shiu and H.K. Ng, On local antimagic chromatic number of cyclerelated join graphs, Discuss. Math. Graph Theory, 4 (1), 133–152, 2021.
  • [13] M. Nalliah, Antimagic labeling of Graphs and digraphs, Ph.D Thesis, Kalasalingam University, Tamil Nadu, India, 2013.
  • [14] S. Shaebani, On local antimagic chromatic number of graphs, J. Algebr. Syst. 7 (2), 245–256, 2020.
  • [15] R. Shankar and M. Nalliah, Local vertex antimagic chromatic number of some wheel related graphs, Proyecciones J. Math. 41 (1), 319–334, 2022.
  • [16] V. Priyadharshini and M. Nalliah, Local distance antimagic chromatic number for the union of complete bipartite graphs, Tamkang J. Math. online, https://journals.math.tku.edu.tw/index.php/TKJM/article/view/4804, 2023.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Wai-chee Shiu 0000-0002-2819-8480

Gee-choon Lau 0000-0002-9777-6571

Nalliah M 0000-0002-3927-2607

Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 27 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 53 Sayı: 3

Kaynak Göster

APA Shiu, W.-c., Lau, G.-c., & M, N. (2024). Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics, 53(3), 788-802. https://doi.org/10.15672/hujms.1266085
AMA Shiu Wc, Lau Gc, M N. Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics. Haziran 2024;53(3):788-802. doi:10.15672/hujms.1266085
Chicago Shiu, Wai-chee, Gee-choon Lau, ve Nalliah M. “Local Distance Antimagic Cromatic Number of Join Product of Graphs With Cycles or Paths”. Hacettepe Journal of Mathematics and Statistics 53, sy. 3 (Haziran 2024): 788-802. https://doi.org/10.15672/hujms.1266085.
EndNote Shiu W-c, Lau G-c, M N (01 Haziran 2024) Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics 53 3 788–802.
IEEE W.-c. Shiu, G.-c. Lau, ve N. M, “Local distance antimagic cromatic number of join product of graphs with cycles or paths”, Hacettepe Journal of Mathematics and Statistics, c. 53, sy. 3, ss. 788–802, 2024, doi: 10.15672/hujms.1266085.
ISNAD Shiu, Wai-chee vd. “Local Distance Antimagic Cromatic Number of Join Product of Graphs With Cycles or Paths”. Hacettepe Journal of Mathematics and Statistics 53/3 (Haziran 2024), 788-802. https://doi.org/10.15672/hujms.1266085.
JAMA Shiu W-c, Lau G-c, M N. Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics. 2024;53:788–802.
MLA Shiu, Wai-chee vd. “Local Distance Antimagic Cromatic Number of Join Product of Graphs With Cycles or Paths”. Hacettepe Journal of Mathematics and Statistics, c. 53, sy. 3, 2024, ss. 788-02, doi:10.15672/hujms.1266085.
Vancouver Shiu W-c, Lau G-c, M N. Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):788-802.