Araştırma Makalesi
BibTex RIS Kaynak Göster

Iterations and unions of star selection properties on topological spaces

Yıl 2025, Cilt: 54 Sayı: 1, 180 - 199, 28.02.2025
https://doi.org/10.15672/hujms.1198061

Öz

In this paper, we investigate what selection principles properties are possessed by small (with respect to the bounding and dominating numbers) unions of spaces with certain (star) selection principles. Furthermore, we give several results about iterations of these properties and weaker properties than paracompactness. In addition, we study the behaviour of these iterated properties on $\Psi$-spaces. Finally, we show that, consistently, there is a normal star-Menger space that is not strongly star-Menger; this example answers a couple of questions posed in [J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, Some star and strongly star selection principles, Topology Appl. 258, 572-587, 2019].

Destekleyen Kurum

Consejo Nacional de Ciencia y Tecnología (CONACYT, México)

Proje Numarası

Scholarship 769010

Teşekkür

The first-listed author thanks to Consejo Nacional de Ciencia y Tecnología (CONACYT, México) for the financial support (Scholarship 769010) for this research.

Kaynakça

  • [1] M. Bonanzinga, Star-Lindelöf and absolutely star-Lindelöf spaces, Quest. Answ. Gen. Topol. 16, 79104, 1998.
  • [2] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kocinac, Star- Hurewicz and related properties, Appl. Gen.Topol. 5, 79-89, 2004.
  • [3] M. Bonanzinga, F. Maesano, Selectively strongly star-Menger spaces and related properties, Atti della Accademia Peloritana dei Pericolanti, 99 (2), A2 2021.
  • [4] M. Bonanzinga, M. Matveev, Some covering properties for -spaces, Mat. Vesn. 61, 3-11, 2009.
  • [5] L. Bukovský, J. Haleš, On Hurewicz properties, Topology Appl. 132, 71-79, 2003.
  • [6] D.K. Burke, Covering properties, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 347-422, 1984.
  • [7] J. Casas-de la Rosa, S. A. Garcia-Balan, Variations of star selection principles on small spaces, Filomat 36 (14), 4903-4917, 2022.
  • [8] J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, Some star and strongly star selection principles, Topology Appl. 258, 572-587, 2019.
  • [9] D. Chandra, N. Alam, On certain star versions of the Scheepers property, arXiv: 2207.08595 [math.GN]
  • [10] M. V. Cuzzupè, Some selective and monotone versions of covering properties and some results on the cardinality of a topological space, PhD thesis, University of Catania, 2017.
  • [11] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39, 71-103, 1991.
  • [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics 6, 1989.
  • [13] S. A. Garcia-Balan, Results on star selection principles and weakenings of normality in $\Psi$-spaces, PhD thesis, York University, 2020.
  • [14] F. Hernández-Hernández, M. Hrušák, Topology of Mrówka-Isbell spaces. In: Hrušák, Tamariz, Tkachenko (Eds.), Pseudocompact Topological Spaces, Springer International Publishing AG, 2018.
  • [15] M. Hruák, O. Guzmán, n-Luzin gaps, Topology Appl. 160, 1364-1374, 2013.
  • [16] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1), 401-421, 1925.
  • [17] Lj.D.R. Kocinac, Star-Menger and related spaces, Publ. Math. (Debr.) 55, 421-431, 1999.
  • [18] N.N. Luzin, On subsets of the series of natural numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11, 403410, 1947.
  • [19] Lj.D.R. Kocinac, Star selection principles: A survey, Khayyam J. Math. 1, 82-106, 2015.
  • [20] M.V. Matveev, A survey on star covering properties, Topology Atlas, Preprint No. 330, 1998.
  • [21] K.Menger, Einige überdeckungssätze der Punltmengen-lehre, Sitzungberichte Abt.2a, Mathematik, Astronomie, Physik, Meteorologie and Mechanik (Wiener Akademie, Wien) 133, 421-444, 1924.
  • [22] D. Repovš, L. Zdomskyy, On the Menger covering property and D-spaces, Proc. Amer. Math. Soc. 140 (3), 10691074, 2012.
  • [23] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30, 50-55, 1938.
  • [24] M. E. Rudin, Dowker Spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set- Theoretic Topology, North-Holland, Amsterdam, 761-780, 1984.
  • [25] M. Scheepers, Combinatorics of open covers I: Ramsey Theory, Topology Appl. 69, 31-62, 1996.
  • [26] Y.-K. Song, Remarks on countability and star covering properties, Topology Appl. 158, 1121-1123, 2011.
  • [27] Y.-K. Song, Remarks on neighborhood star-Lindelöf spaces II, Filomat 27 (5), 875- 880, 2013.
  • [28] Y.-K. Song, X.Wei-Feng, Remarks on new star-selection principles in topology, Topology Appl. 268, 106921, 2019.
  • [29] F. D. Tall, Normality versus collectionwise normality, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 685-732, 1984.
  • [30] F. D. Tall, Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D, Topology Appl. 158 (18), 2556-2563, 2011.
  • [31] Ian J. Tree, Constructing regular 2-starcompact spaces that are not strongly 2-star- Lindelöf, Topology Appl. 47, 129-132, 1992.
Yıl 2025, Cilt: 54 Sayı: 1, 180 - 199, 28.02.2025
https://doi.org/10.15672/hujms.1198061

Öz

Proje Numarası

Scholarship 769010

Kaynakça

  • [1] M. Bonanzinga, Star-Lindelöf and absolutely star-Lindelöf spaces, Quest. Answ. Gen. Topol. 16, 79104, 1998.
  • [2] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kocinac, Star- Hurewicz and related properties, Appl. Gen.Topol. 5, 79-89, 2004.
  • [3] M. Bonanzinga, F. Maesano, Selectively strongly star-Menger spaces and related properties, Atti della Accademia Peloritana dei Pericolanti, 99 (2), A2 2021.
  • [4] M. Bonanzinga, M. Matveev, Some covering properties for -spaces, Mat. Vesn. 61, 3-11, 2009.
  • [5] L. Bukovský, J. Haleš, On Hurewicz properties, Topology Appl. 132, 71-79, 2003.
  • [6] D.K. Burke, Covering properties, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 347-422, 1984.
  • [7] J. Casas-de la Rosa, S. A. Garcia-Balan, Variations of star selection principles on small spaces, Filomat 36 (14), 4903-4917, 2022.
  • [8] J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, Some star and strongly star selection principles, Topology Appl. 258, 572-587, 2019.
  • [9] D. Chandra, N. Alam, On certain star versions of the Scheepers property, arXiv: 2207.08595 [math.GN]
  • [10] M. V. Cuzzupè, Some selective and monotone versions of covering properties and some results on the cardinality of a topological space, PhD thesis, University of Catania, 2017.
  • [11] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39, 71-103, 1991.
  • [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics 6, 1989.
  • [13] S. A. Garcia-Balan, Results on star selection principles and weakenings of normality in $\Psi$-spaces, PhD thesis, York University, 2020.
  • [14] F. Hernández-Hernández, M. Hrušák, Topology of Mrówka-Isbell spaces. In: Hrušák, Tamariz, Tkachenko (Eds.), Pseudocompact Topological Spaces, Springer International Publishing AG, 2018.
  • [15] M. Hruák, O. Guzmán, n-Luzin gaps, Topology Appl. 160, 1364-1374, 2013.
  • [16] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1), 401-421, 1925.
  • [17] Lj.D.R. Kocinac, Star-Menger and related spaces, Publ. Math. (Debr.) 55, 421-431, 1999.
  • [18] N.N. Luzin, On subsets of the series of natural numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11, 403410, 1947.
  • [19] Lj.D.R. Kocinac, Star selection principles: A survey, Khayyam J. Math. 1, 82-106, 2015.
  • [20] M.V. Matveev, A survey on star covering properties, Topology Atlas, Preprint No. 330, 1998.
  • [21] K.Menger, Einige überdeckungssätze der Punltmengen-lehre, Sitzungberichte Abt.2a, Mathematik, Astronomie, Physik, Meteorologie and Mechanik (Wiener Akademie, Wien) 133, 421-444, 1924.
  • [22] D. Repovš, L. Zdomskyy, On the Menger covering property and D-spaces, Proc. Amer. Math. Soc. 140 (3), 10691074, 2012.
  • [23] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30, 50-55, 1938.
  • [24] M. E. Rudin, Dowker Spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set- Theoretic Topology, North-Holland, Amsterdam, 761-780, 1984.
  • [25] M. Scheepers, Combinatorics of open covers I: Ramsey Theory, Topology Appl. 69, 31-62, 1996.
  • [26] Y.-K. Song, Remarks on countability and star covering properties, Topology Appl. 158, 1121-1123, 2011.
  • [27] Y.-K. Song, Remarks on neighborhood star-Lindelöf spaces II, Filomat 27 (5), 875- 880, 2013.
  • [28] Y.-K. Song, X.Wei-Feng, Remarks on new star-selection principles in topology, Topology Appl. 268, 106921, 2019.
  • [29] F. D. Tall, Normality versus collectionwise normality, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 685-732, 1984.
  • [30] F. D. Tall, Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D, Topology Appl. 158 (18), 2556-2563, 2011.
  • [31] Ian J. Tree, Constructing regular 2-starcompact spaces that are not strongly 2-star- Lindelöf, Topology Appl. 47, 129-132, 1992.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Javier Casas-de La Rosa 0000-0002-0498-9149

William Chen-mertens 0000-0001-6611-878X

Sergio A. Garcia-balan 0000-0002-5839-8475

Proje Numarası Scholarship 769010
Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 28 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 1

Kaynak Göster

APA Casas-de La Rosa, J., Chen-mertens, W., & Garcia-balan, S. A. (2025). Iterations and unions of star selection properties on topological spaces. Hacettepe Journal of Mathematics and Statistics, 54(1), 180-199. https://doi.org/10.15672/hujms.1198061
AMA Casas-de La Rosa J, Chen-mertens W, Garcia-balan SA. Iterations and unions of star selection properties on topological spaces. Hacettepe Journal of Mathematics and Statistics. Şubat 2025;54(1):180-199. doi:10.15672/hujms.1198061
Chicago Casas-de La Rosa, Javier, William Chen-mertens, ve Sergio A. Garcia-balan. “Iterations and Unions of Star Selection Properties on Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 54, sy. 1 (Şubat 2025): 180-99. https://doi.org/10.15672/hujms.1198061.
EndNote Casas-de La Rosa J, Chen-mertens W, Garcia-balan SA (01 Şubat 2025) Iterations and unions of star selection properties on topological spaces. Hacettepe Journal of Mathematics and Statistics 54 1 180–199.
IEEE J. Casas-de La Rosa, W. Chen-mertens, ve S. A. Garcia-balan, “Iterations and unions of star selection properties on topological spaces”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, ss. 180–199, 2025, doi: 10.15672/hujms.1198061.
ISNAD Casas-de La Rosa, Javier vd. “Iterations and Unions of Star Selection Properties on Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 54/1 (Şubat 2025), 180-199. https://doi.org/10.15672/hujms.1198061.
JAMA Casas-de La Rosa J, Chen-mertens W, Garcia-balan SA. Iterations and unions of star selection properties on topological spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54:180–199.
MLA Casas-de La Rosa, Javier vd. “Iterations and Unions of Star Selection Properties on Topological Spaces”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, 2025, ss. 180-99, doi:10.15672/hujms.1198061.
Vancouver Casas-de La Rosa J, Chen-mertens W, Garcia-balan SA. Iterations and unions of star selection properties on topological spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54(1):180-99.