Araştırma Makalesi
BibTex RIS Kaynak Göster

On the rank of two-dimensional simplicial distributions

Yıl 2025, Cilt: 54 Sayı: 2, 414 - 435, 28.04.2025
https://doi.org/10.15672/hujms.1414442

Öz

Simplicial distributions provide a framework for studying quantum contextuality, a generalization of Bell's non-locality. Understanding extremal simplicial distributions is of fundamental importance with applications to quantum computing. We introduce a rank formula for twisted simplicial distributions defined for $2$-dimensional measurement spaces and provide a systematic approach for describing extremal distributions.

Destekleyen Kurum

US Air Force Office of Scientific Research

Proje Numarası

FA9550-21-1-0002

Kaynakça

  • [1] S. Abramsky and A. Brandenburger, The sheaf-theoretic structure of non-locality and contextuality, New J. Phys. 13 (11), 113036, 2011.
  • [2] R. S. Barbosa, A. Kharoof, and C. Okay, A bundle perspective on contextuality: Empirical models and simplicial distributions on bundle scenarios, arXiv preprint arXiv:2308.06336, 2023.
  • [3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, Nonlocal correlations as an information-theoretic resource, Phys. Rev. A, 71, 022101, 2005.
  • [4] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1, 195–200, 1964.
  • [5] V. Chvátal, Linear programming. A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1983.
  • [6] G. Friedman, An elementary illustrated introduction to simplicial sets, arXiv preprint arXiv:0809.4221, 2008.
  • [7] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory. Springer Science & Business Media, 2009.
  • [8] C. Horne, M. Horne, A. Shimony, and H. Richard, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 880, 1969.
  • [9] S. Ipek and C. Okay, The degenerate vertices of the 2-qubit $\Lambda$-polytope and their update rules, arXiv preprint arXiv:2312.10734, 2023.
  • [10] N. S. Jones and L. Masanes, Interconversion of nonlocal correlations, Phys. Rev. A, 72 (5), 052312, 2005.
  • [11] A. Kharoof, S. Ipek, and C. Okay, Topological methods for studying contextuality: N-cycle scenarios and beyond, Entropy, 25 (8), 2023.
  • [12] A. Kharoof and C. Okay, Simplicial distributions, convex categories and contextuality, preprint arXiv:2211.00571, 2022.
  • [13] S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17, 59–87, 1967.
  • [14] J. P. May, Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
  • [15] N. D. Mermin, Hidden variables and the two theorems of John Bell, Rev. Modern Phys. 65 (3), 803, 1993.
  • [16] C. Okay, H. Y. Chung, and S. Ipek, Mermin polytopes in quantum computation and foundations, Quantum Inf. Comput. 23 (9), 733–782, 2023.
  • [17] C. Okay, A. Kharoof, and S. Ipek, Simplicial quantum contextuality, Quantum, 7, 2023.
  • [18] C. Okay, S. Roberts, S. D. Bartlett, and R. Raussendorf, Topological proofs of contextuality in quantum mechanics, Quantum Inf. Comput. 17 (13-14), 1135–1166, 2017.
  • [19] C. Okay and W.H. Stern, Twisted simplicial distributions, arXiv preprint arXiv:2403.19808, 2024.
  • [20] I. Pitowsky, Quantum Probability Quantum Logic, Springer, 1989.
  • [21] S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24 (3), 379–385, 1994.
  • [22] C. A. Weibel, An introduction to homological algebra. 38, Cambridge university press, 1995.
  • [23] T. Zaslavsky, Matrices in the theory of signed simple graphs, Advances in discrete mathematics and applications: Mysore, 2008, vol. 13 of Ramanujan Math. Soc. Lect. Notes Ser. 207–229, Ramanujan Math. Soc., Mysore, 2010.
  • [24] M. Zurel, C. Okay, and R. Raussendorf, Hidden variable model for universal quantum computation with magic states on qubits, Phys. Rev. Lett. 125 (26), 260404, 2020.
Yıl 2025, Cilt: 54 Sayı: 2, 414 - 435, 28.04.2025
https://doi.org/10.15672/hujms.1414442

Öz

Proje Numarası

FA9550-21-1-0002

Kaynakça

  • [1] S. Abramsky and A. Brandenburger, The sheaf-theoretic structure of non-locality and contextuality, New J. Phys. 13 (11), 113036, 2011.
  • [2] R. S. Barbosa, A. Kharoof, and C. Okay, A bundle perspective on contextuality: Empirical models and simplicial distributions on bundle scenarios, arXiv preprint arXiv:2308.06336, 2023.
  • [3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, Nonlocal correlations as an information-theoretic resource, Phys. Rev. A, 71, 022101, 2005.
  • [4] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1, 195–200, 1964.
  • [5] V. Chvátal, Linear programming. A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1983.
  • [6] G. Friedman, An elementary illustrated introduction to simplicial sets, arXiv preprint arXiv:0809.4221, 2008.
  • [7] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory. Springer Science & Business Media, 2009.
  • [8] C. Horne, M. Horne, A. Shimony, and H. Richard, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 880, 1969.
  • [9] S. Ipek and C. Okay, The degenerate vertices of the 2-qubit $\Lambda$-polytope and their update rules, arXiv preprint arXiv:2312.10734, 2023.
  • [10] N. S. Jones and L. Masanes, Interconversion of nonlocal correlations, Phys. Rev. A, 72 (5), 052312, 2005.
  • [11] A. Kharoof, S. Ipek, and C. Okay, Topological methods for studying contextuality: N-cycle scenarios and beyond, Entropy, 25 (8), 2023.
  • [12] A. Kharoof and C. Okay, Simplicial distributions, convex categories and contextuality, preprint arXiv:2211.00571, 2022.
  • [13] S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17, 59–87, 1967.
  • [14] J. P. May, Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
  • [15] N. D. Mermin, Hidden variables and the two theorems of John Bell, Rev. Modern Phys. 65 (3), 803, 1993.
  • [16] C. Okay, H. Y. Chung, and S. Ipek, Mermin polytopes in quantum computation and foundations, Quantum Inf. Comput. 23 (9), 733–782, 2023.
  • [17] C. Okay, A. Kharoof, and S. Ipek, Simplicial quantum contextuality, Quantum, 7, 2023.
  • [18] C. Okay, S. Roberts, S. D. Bartlett, and R. Raussendorf, Topological proofs of contextuality in quantum mechanics, Quantum Inf. Comput. 17 (13-14), 1135–1166, 2017.
  • [19] C. Okay and W.H. Stern, Twisted simplicial distributions, arXiv preprint arXiv:2403.19808, 2024.
  • [20] I. Pitowsky, Quantum Probability Quantum Logic, Springer, 1989.
  • [21] S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24 (3), 379–385, 1994.
  • [22] C. A. Weibel, An introduction to homological algebra. 38, Cambridge university press, 1995.
  • [23] T. Zaslavsky, Matrices in the theory of signed simple graphs, Advances in discrete mathematics and applications: Mysore, 2008, vol. 13 of Ramanujan Math. Soc. Lect. Notes Ser. 207–229, Ramanujan Math. Soc., Mysore, 2010.
  • [24] M. Zurel, C. Okay, and R. Raussendorf, Hidden variable model for universal quantum computation with magic states on qubits, Phys. Rev. Lett. 125 (26), 260404, 2020.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kategori Teorisi, K Teorisi, Homolojik Cebir, Topoloji
Bölüm Matematik
Yazarlar

Cihan Okay 0000-0001-8097-5227

Proje Numarası FA9550-21-1-0002
Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 28 Nisan 2025
Gönderilme Tarihi 3 Ocak 2024
Kabul Tarihi 29 Nisan 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 2

Kaynak Göster

APA Okay, C. (2025). On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics, 54(2), 414-435. https://doi.org/10.15672/hujms.1414442
AMA Okay C. On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics. Nisan 2025;54(2):414-435. doi:10.15672/hujms.1414442
Chicago Okay, Cihan. “On the Rank of Two-Dimensional Simplicial Distributions”. Hacettepe Journal of Mathematics and Statistics 54, sy. 2 (Nisan 2025): 414-35. https://doi.org/10.15672/hujms.1414442.
EndNote Okay C (01 Nisan 2025) On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics 54 2 414–435.
IEEE C. Okay, “On the rank of two-dimensional simplicial distributions”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 2, ss. 414–435, 2025, doi: 10.15672/hujms.1414442.
ISNAD Okay, Cihan. “On the Rank of Two-Dimensional Simplicial Distributions”. Hacettepe Journal of Mathematics and Statistics 54/2 (Nisan 2025), 414-435. https://doi.org/10.15672/hujms.1414442.
JAMA Okay C. On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics. 2025;54:414–435.
MLA Okay, Cihan. “On the Rank of Two-Dimensional Simplicial Distributions”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 2, 2025, ss. 414-35, doi:10.15672/hujms.1414442.
Vancouver Okay C. On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):414-35.