Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 54 Sayı: 2, 470 - 497, 28.04.2025
https://doi.org/10.15672/hujms.1414765

Öz

Kaynakça

  • [1] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks 8 (9), 1379–1408, 1995.
  • [2] K. Arwini and C.T.J. Dodson, Neighbourhoods of independence and associated geometry in manifolds of bivariate Gaussian and Freund distributions, Open Math. 5 (1), 50–83, 2007.
  • [3] B. Balcerzak, Linear connection and secondary characteristic classes of Lie algebroids, Monographs of Lodz University of Technology, 2021. Doi:10.34658/9788366741287.
  • [4] H. Baltazar and A. Da Silva, On static manifolds and related critical spaces with cyclic parallel Ricci tensor, Advances in Geometry 21 (3), 443–450, 2021.
  • [5] A. Barros, R. Diógenes and E. Ribeiro Jr, Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary, J. Geom. Anal. 25, 2698– 2715, 2015.
  • [6] M. Belkin, P. Niyogi and V. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and unlabeled examples, Journal of Machine Learning Research 7, 2399–2434, 2006.
  • [7] O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, Springer, Cham, Switzerland, 2014.
  • [8] A. Caticha, Geometry from information geometry, arxiv.org/abs/1512.09076v1.
  • [9] A. Caticha, The information geometry of space and time, Proceedings 33 (1), 15, 2019.
  • [10] R. A. Fisher, On the mathematical foundations of theoretical statistics, Phil. Trans. Roy. Soc. London. 222, 309–368, 1922.
  • [11] S. Kobayashi and Y. Ohno, On a constant curvature statistical manifold, Inf. Geom. 5 (1), 31-46, 2022.
  • [12] P. Miao and L.F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE. 36, 141–171, 2009.
  • [13] P. Miao and L.F. Tam, Einstein and conformally flat critical metrics of the volume functional, Trans. Amer. Math. Soc. 363, 2907–2937, 2011.
  • [14] B. Opozda, Bochners technique for statistical structures, Ann. Global Anal. Geom. 48, 357–395, 2015.
  • [15] K. Sun and S. Marchand-Maillet, An information geometry of statistical manifold learning, Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1–9, 2014.

$f$-statistical connections and Miao-Tam statistical manifolds

Yıl 2025, Cilt: 54 Sayı: 2, 470 - 497, 28.04.2025
https://doi.org/10.15672/hujms.1414765

Öz

We introduce $f$-statistical connections as a family of statistical connections and study some geometric objects associated to these connections such as divergence, curvature and Ricci tensors, Hessian and Laplacian operators. We construct examples of $f$-statistical connections and study the introducing concepts on them. Finally we introduce Miao-Tam statistical manifolds and study properties of them.

Kaynakça

  • [1] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks 8 (9), 1379–1408, 1995.
  • [2] K. Arwini and C.T.J. Dodson, Neighbourhoods of independence and associated geometry in manifolds of bivariate Gaussian and Freund distributions, Open Math. 5 (1), 50–83, 2007.
  • [3] B. Balcerzak, Linear connection and secondary characteristic classes of Lie algebroids, Monographs of Lodz University of Technology, 2021. Doi:10.34658/9788366741287.
  • [4] H. Baltazar and A. Da Silva, On static manifolds and related critical spaces with cyclic parallel Ricci tensor, Advances in Geometry 21 (3), 443–450, 2021.
  • [5] A. Barros, R. Diógenes and E. Ribeiro Jr, Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary, J. Geom. Anal. 25, 2698– 2715, 2015.
  • [6] M. Belkin, P. Niyogi and V. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and unlabeled examples, Journal of Machine Learning Research 7, 2399–2434, 2006.
  • [7] O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, Springer, Cham, Switzerland, 2014.
  • [8] A. Caticha, Geometry from information geometry, arxiv.org/abs/1512.09076v1.
  • [9] A. Caticha, The information geometry of space and time, Proceedings 33 (1), 15, 2019.
  • [10] R. A. Fisher, On the mathematical foundations of theoretical statistics, Phil. Trans. Roy. Soc. London. 222, 309–368, 1922.
  • [11] S. Kobayashi and Y. Ohno, On a constant curvature statistical manifold, Inf. Geom. 5 (1), 31-46, 2022.
  • [12] P. Miao and L.F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE. 36, 141–171, 2009.
  • [13] P. Miao and L.F. Tam, Einstein and conformally flat critical metrics of the volume functional, Trans. Amer. Math. Soc. 363, 2907–2937, 2011.
  • [14] B. Opozda, Bochners technique for statistical structures, Ann. Global Anal. Geom. 48, 357–395, 2015.
  • [15] K. Sun and S. Marchand-Maillet, An information geometry of statistical manifold learning, Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1–9, 2014.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Matematik
Yazarlar

Esmaeil Peyghan 0000-0002-2713-6253

Leila Nourmohammadifar 0000-0002-8772-4460

Akram Ali 0000-0002-6053-3031

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 28 Nisan 2025
Gönderilme Tarihi 17 Ocak 2024
Kabul Tarihi 28 Mayıs 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 2

Kaynak Göster

APA Peyghan, E., Nourmohammadifar, L., & Ali, A. (2025). $f$-statistical connections and Miao-Tam statistical manifolds. Hacettepe Journal of Mathematics and Statistics, 54(2), 470-497. https://doi.org/10.15672/hujms.1414765
AMA Peyghan E, Nourmohammadifar L, Ali A. $f$-statistical connections and Miao-Tam statistical manifolds. Hacettepe Journal of Mathematics and Statistics. Nisan 2025;54(2):470-497. doi:10.15672/hujms.1414765
Chicago Peyghan, Esmaeil, Leila Nourmohammadifar, ve Akram Ali. “$f$-Statistical Connections and Miao-Tam Statistical Manifolds”. Hacettepe Journal of Mathematics and Statistics 54, sy. 2 (Nisan 2025): 470-97. https://doi.org/10.15672/hujms.1414765.
EndNote Peyghan E, Nourmohammadifar L, Ali A (01 Nisan 2025) $f$-statistical connections and Miao-Tam statistical manifolds. Hacettepe Journal of Mathematics and Statistics 54 2 470–497.
IEEE E. Peyghan, L. Nourmohammadifar, ve A. Ali, “$f$-statistical connections and Miao-Tam statistical manifolds”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 2, ss. 470–497, 2025, doi: 10.15672/hujms.1414765.
ISNAD Peyghan, Esmaeil vd. “$f$-Statistical Connections and Miao-Tam Statistical Manifolds”. Hacettepe Journal of Mathematics and Statistics 54/2 (Nisan 2025), 470-497. https://doi.org/10.15672/hujms.1414765.
JAMA Peyghan E, Nourmohammadifar L, Ali A. $f$-statistical connections and Miao-Tam statistical manifolds. Hacettepe Journal of Mathematics and Statistics. 2025;54:470–497.
MLA Peyghan, Esmaeil vd. “$f$-Statistical Connections and Miao-Tam Statistical Manifolds”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 2, 2025, ss. 470-97, doi:10.15672/hujms.1414765.
Vancouver Peyghan E, Nourmohammadifar L, Ali A. $f$-statistical connections and Miao-Tam statistical manifolds. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):470-97.