In this paper, we introduce a new class of operators on a complex Hilbert space $\mathcal{H}$ which is called polynomially accretive operators, and thereby extending the notion of accretive and $n$-real power positive operators. We give several properties of the newly introduced class, and generalize some results for accretive operators. We also prove that every $2$-normal and $(2k+1)$-real power positive operator, for some $k\in\mathbb{N}$, must be $n$-normal for all $n\geq2$. Finally, we give sufficient conditions for the normality in the preceding implication.
polynomially accretive operators accretive operators n–real power positive operators Re–nnd matrices polynomially normal operators
Birincil Dil | İngilizce |
---|---|
Konular | Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 27 Ağustos 2024 |
Yayımlanma Tarihi | 28 Nisan 2025 |
Gönderilme Tarihi | 23 Ocak 2024 |
Kabul Tarihi | 1 Haziran 2024 |
Yayımlandığı Sayı | Yıl 2025 Cilt: 54 Sayı: 2 |