Araştırma Makalesi
BibTex RIS Kaynak Göster

Exploration of multivalent harmonic functions: Investigating essential properties

Yıl 2025, Cilt: 54 Sayı: 2, 562 - 574, 28.04.2025
https://doi.org/10.15672/hujms.1428478

Öz

Within this manuscript, we introduce an innovative subclass of multivalent harmonic functions, encompassing higher-order derivatives within the confines of an open unit disk. Our investigation extends to the analysis of coefficient bounds, growth estimates, starlikeness, and convexity radii uniquely associated with this particular class. Furthermore, we scrutinize the property of closure under convolution operations for this subclass.

Kaynakça

  • [1] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions with missing coefficients, Math. Sci. Res. J. 7, 347-352, 2003.
  • [2] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic convex functions, Math. Sci. Res. J. 11 (9), 537, 2007.
  • [3] O. Al-Refai, Some properties for a class of analytic functions defined by a higher-order differential inequality, Turk. J. Math. 43 (5), 2473-2493, 2019.
  • [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3-25, 1984.
  • [5] S. Çakmak, E. Yasar, and S. Yalçn, New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacet. J. Math. Stat. 51 (1), 172-186, 2022.
  • [6] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Elliptic Equ. 45 (3), 263-271, 2001.
  • [7] P.L. Duren, Univalent Functions, in: Grundlehren Der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  • [8] L. Fejér, Über die Positivität von Summen, Acta Sci. Szeged, 75-86, 1925.
  • [9] M.R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2), 81-92, 2004.
  • [10] G.I. Oros, S. Yalçn, and H. Bayram, Some Properties of Certain Multivalent Harmonic Functions, Mathematics 11 (11), 2416, 2023.
  • [11] S. Owa, T. Hayami, K. Kuroki, Some properties of certain analytic functions, Int. J. Math. Math. Sci. 2007, Hindawi.
  • [12] M. A. Rosihan, S.K. Lee, K.G. Subramanian, A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal. 2011.
  • [13] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Am. Math. Soc. 106 (1), 145-152, 1989.
  • [14] E. Yasar and S.Y. Tokgöz, Close-to-convexity of a class of harmonic mappings defined by a third-order differential inequality, Turk. J. Math. 45 (2), 678-694, 2021.
Yıl 2025, Cilt: 54 Sayı: 2, 562 - 574, 28.04.2025
https://doi.org/10.15672/hujms.1428478

Öz

Kaynakça

  • [1] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions with missing coefficients, Math. Sci. Res. J. 7, 347-352, 2003.
  • [2] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic convex functions, Math. Sci. Res. J. 11 (9), 537, 2007.
  • [3] O. Al-Refai, Some properties for a class of analytic functions defined by a higher-order differential inequality, Turk. J. Math. 43 (5), 2473-2493, 2019.
  • [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3-25, 1984.
  • [5] S. Çakmak, E. Yasar, and S. Yalçn, New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacet. J. Math. Stat. 51 (1), 172-186, 2022.
  • [6] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Elliptic Equ. 45 (3), 263-271, 2001.
  • [7] P.L. Duren, Univalent Functions, in: Grundlehren Der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  • [8] L. Fejér, Über die Positivität von Summen, Acta Sci. Szeged, 75-86, 1925.
  • [9] M.R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2), 81-92, 2004.
  • [10] G.I. Oros, S. Yalçn, and H. Bayram, Some Properties of Certain Multivalent Harmonic Functions, Mathematics 11 (11), 2416, 2023.
  • [11] S. Owa, T. Hayami, K. Kuroki, Some properties of certain analytic functions, Int. J. Math. Math. Sci. 2007, Hindawi.
  • [12] M. A. Rosihan, S.K. Lee, K.G. Subramanian, A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal. 2011.
  • [13] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Am. Math. Soc. 106 (1), 145-152, 1989.
  • [14] E. Yasar and S.Y. Tokgöz, Close-to-convexity of a class of harmonic mappings defined by a third-order differential inequality, Turk. J. Math. 45 (2), 678-694, 2021.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Reel ve Kompleks Fonksiyonlar
Bölüm Matematik
Yazarlar

Serkan Çakmak 0000-0003-0368-7672

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 28 Nisan 2025
Gönderilme Tarihi 30 Ocak 2024
Kabul Tarihi 9 Haziran 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 2

Kaynak Göster

APA Çakmak, S. (2025). Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics, 54(2), 562-574. https://doi.org/10.15672/hujms.1428478
AMA Çakmak S. Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics. Nisan 2025;54(2):562-574. doi:10.15672/hujms.1428478
Chicago Çakmak, Serkan. “Exploration of Multivalent Harmonic Functions: Investigating Essential Properties”. Hacettepe Journal of Mathematics and Statistics 54, sy. 2 (Nisan 2025): 562-74. https://doi.org/10.15672/hujms.1428478.
EndNote Çakmak S (01 Nisan 2025) Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics 54 2 562–574.
IEEE S. Çakmak, “Exploration of multivalent harmonic functions: Investigating essential properties”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 2, ss. 562–574, 2025, doi: 10.15672/hujms.1428478.
ISNAD Çakmak, Serkan. “Exploration of Multivalent Harmonic Functions: Investigating Essential Properties”. Hacettepe Journal of Mathematics and Statistics 54/2 (Nisan 2025), 562-574. https://doi.org/10.15672/hujms.1428478.
JAMA Çakmak S. Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics. 2025;54:562–574.
MLA Çakmak, Serkan. “Exploration of Multivalent Harmonic Functions: Investigating Essential Properties”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 2, 2025, ss. 562-74, doi:10.15672/hujms.1428478.
Vancouver Çakmak S. Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):562-74.