Let $\mathbb{A}$ be the affine group, $\Phi_1, \Phi_2$ be Young functions. We study the Orlicz amalgam spaces $W(L^{\Phi_1} (\mathbb{A}),L^{\Phi_2} (\mathbb{A}))$ defined on $\mathbb{A}$, where the local and global component spaces are the Orlicz spaces $L^{\Phi_1}(\mathbb{A})$ and $L^{\Phi_2}(\mathbb{A})$, respectively. We obtain an equivalent discrete norm on the amalgam space $W(L^{\Phi_1} (\mathbb{A}), L^{\Phi_2} (\mathbb{A}))$ using the constructions related to the affine group. Using the discrete norm we compute the dual space of $W(L^{\Phi_1} (\mathbb{A}),L^{\Phi_2} (\mathbb{A}))$. We also prove that the Orlicz amalgam space is a left $L^1(\mathbb{A})$-module with respect to convolution under certain conditions. Finally, we investigate some inclusion relations between the Orlicz amalgam spaces.
Amalgam spaces Orlicz spaces affine group discrete norms convolution
I would like to thank Prof. S. Öztop for critical reading of the manuscript and helpful suggestions on the subject.
Birincil Dil | İngilizce |
---|---|
Konular | Lie Grupları, Harmonik ve Fourier Analizi, Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 27 Ağustos 2024 |
Yayımlanma Tarihi | 28 Nisan 2025 |
Gönderilme Tarihi | 29 Mart 2024 |
Kabul Tarihi | 1 Haziran 2024 |
Yayımlandığı Sayı | Yıl 2025 Cilt: 54 Sayı: 2 |