Sub-fractional $G$-Brownian motion: Properties and simulations
Yıl 2025,
Cilt: 54 Sayı: 2, 599 - 617, 28.04.2025
Omar Kebiri
,
Zakaria Boumezbeur
,
Mhamed Eddahbi
,
Hacene Boutabia
Öz
In this article, we introduce a new stochastic process called the sub-fractional $G$ -Brownian motion, which serves as an intermediate between the $G$ -Brownian motion and the fractional $G$ -Brownian motion. Although the sub-fractional $G$-Brownian motion shares some properties with the fractional $G$-Brownian motion, it features nonstationary increments. We then examine key characteristics of the process, such as self-similarity, H\"{o}lder continuity, and long-range dependence. Additionally, we propose a method for simulating sample paths of sub-fractional $G$-Brownian motion and conclude by simulating linear stochastic differential equations driven by sub-fractional $G$-Brownian motion.
Etik Beyan
The first named author acknowledges the funding of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -The Berlin Mathematics Research Center MATH+(EXC-2046/1, project ID: 390685689), project EF4-6. The second and fourth named authors acknowledge the funding of the ERASMUS KA107 project.The third named author extends his appreciation to the Researchers Supporting Project number (RSPD2025R1075), King Saud University, Riyadh, Saudi Arabia.
Destekleyen Kurum
FU Berlin and King Saud University
Proje Numarası
EXC-2046/1 and RSPD2025R1075
Teşekkür
The first named author acknowledges the funding of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -The Berlin Mathematics Research Center MATH+(EXC-2046/1, project ID: 390685689), project EF4-6. The second and fourth named authors acknowledge the funding of the ERASMUS KA107 project.The third named author extends his appreciation to the Researchers Supporting Project number (RSPD2025R1075), King Saud University, Riyadh, Saudi Arabia.
Kaynakça
- [1] M. Aneta and F. Darya, On the simulation of sub-fractional Brownian motion,
20th International Conference on Methods and Models in Automation and Robotics
(MMAR), 400-405, 2015.
- [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its
relation to occupation times, Stat. Probab. Lett. 69 (4), 405-419, 2004.
- [3] T.T. Dufera, Fractional Brownian motion in option pricing and dynamic delta hedging:
Experimental simulations, N. Am. J. Econ. Finance. 69, Part B, 2024.
- [4] M.D.N. da Costa, A.A. Brito, N.P.A. Castro, S.T.M.R. Dias and F.G. Zebende,
Trends in the Air Temperature: A Practical Approach for Auto-and Cross-Correlation
Analysis, Adv. Meteorol. 2024 (1), 2024.
- [5] D. Feyel and A. De La Pradelle, On fractional Brownian processes, Potential Anal.
10, 273-288, 1999.
- [6] W. Hu, Q. Yang, L. Peng, L. Liu, P. Zhang, S. Li and J. Wu, Non-stationary modeling
and simulation of strong winds, Heliyon 10 (15), 2024.
- [7] Y. Jicheng, F. Yuqiang and W. Xianjia, Lie symmetry, exact solutions and conservation
laws of bi-fractional BlackScholes equation derived by the fractional G-Brownian
motion, Int. J. Financ. Eng. 11 (1), 2024.
- [8] A. E. Kyojo, E. S. Osima, S. S. Mirau and G. V. Masanja, Applying Stationary and
Nonstationary Generalized Extreme Value Distributions in Modeling Annual Extreme
Temperature Patterns, Adv. Meteorol. 2024 (1), 2024.
- [9] D. Laurent, M. Hu and S. Peng, Function spaces and capacity related to a sublinear
expectation: Application to G-Brownian motion paths, Potential Anal. 34, 139-161,
2011.
- [10] R. Monjo and O. Meseguer-Ruiz, Review: Fractal Geometry in Precipitation, Atmosphere
15 (1), 2024.
- [11] S. Peng, Stochastic Analysis and Applications: The Abel Symposium 2005, Springer
Berlin, Heidelberg, 2007.
- [12] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty,
arXiv:0711.2834 [math.PR].
- [13] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty: with robust
CLT and G-Brownian motion, Springer Nature, 2019.
- [14] F. Shokrollahi, D. Ahmadian and L.V. Ballestra, Pricing Asian options under the
mixed fractional Brownian motion with jumps, Math. Comput. Simul. 226, 172-183,
2024.
- [15] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5),
431-448, 2007.
- [16] A.C. Tudor, Analysis of variations for self-similar processes: a stochastic calculus
approach, Springer Science & Business Media, 2013.
- [17] C. Wei, G-white noise theory, wavelet decomposition for fractional G-Brownian motion,
and bid-ask pricing application to finance under uncertainty, arXiv:1306.4070
[q-fin.PR].
- [18] J. Yang and W. Zhao, Numerical simulations for G-Brownian motion, Front. Math.
China 11, 1625-1643, 2016.
- [19] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration,
Acta Math. 67 (1), 251-282, 1936.
Yıl 2025,
Cilt: 54 Sayı: 2, 599 - 617, 28.04.2025
Omar Kebiri
,
Zakaria Boumezbeur
,
Mhamed Eddahbi
,
Hacene Boutabia
Proje Numarası
EXC-2046/1 and RSPD2025R1075
Kaynakça
- [1] M. Aneta and F. Darya, On the simulation of sub-fractional Brownian motion,
20th International Conference on Methods and Models in Automation and Robotics
(MMAR), 400-405, 2015.
- [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its
relation to occupation times, Stat. Probab. Lett. 69 (4), 405-419, 2004.
- [3] T.T. Dufera, Fractional Brownian motion in option pricing and dynamic delta hedging:
Experimental simulations, N. Am. J. Econ. Finance. 69, Part B, 2024.
- [4] M.D.N. da Costa, A.A. Brito, N.P.A. Castro, S.T.M.R. Dias and F.G. Zebende,
Trends in the Air Temperature: A Practical Approach for Auto-and Cross-Correlation
Analysis, Adv. Meteorol. 2024 (1), 2024.
- [5] D. Feyel and A. De La Pradelle, On fractional Brownian processes, Potential Anal.
10, 273-288, 1999.
- [6] W. Hu, Q. Yang, L. Peng, L. Liu, P. Zhang, S. Li and J. Wu, Non-stationary modeling
and simulation of strong winds, Heliyon 10 (15), 2024.
- [7] Y. Jicheng, F. Yuqiang and W. Xianjia, Lie symmetry, exact solutions and conservation
laws of bi-fractional BlackScholes equation derived by the fractional G-Brownian
motion, Int. J. Financ. Eng. 11 (1), 2024.
- [8] A. E. Kyojo, E. S. Osima, S. S. Mirau and G. V. Masanja, Applying Stationary and
Nonstationary Generalized Extreme Value Distributions in Modeling Annual Extreme
Temperature Patterns, Adv. Meteorol. 2024 (1), 2024.
- [9] D. Laurent, M. Hu and S. Peng, Function spaces and capacity related to a sublinear
expectation: Application to G-Brownian motion paths, Potential Anal. 34, 139-161,
2011.
- [10] R. Monjo and O. Meseguer-Ruiz, Review: Fractal Geometry in Precipitation, Atmosphere
15 (1), 2024.
- [11] S. Peng, Stochastic Analysis and Applications: The Abel Symposium 2005, Springer
Berlin, Heidelberg, 2007.
- [12] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty,
arXiv:0711.2834 [math.PR].
- [13] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty: with robust
CLT and G-Brownian motion, Springer Nature, 2019.
- [14] F. Shokrollahi, D. Ahmadian and L.V. Ballestra, Pricing Asian options under the
mixed fractional Brownian motion with jumps, Math. Comput. Simul. 226, 172-183,
2024.
- [15] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5),
431-448, 2007.
- [16] A.C. Tudor, Analysis of variations for self-similar processes: a stochastic calculus
approach, Springer Science & Business Media, 2013.
- [17] C. Wei, G-white noise theory, wavelet decomposition for fractional G-Brownian motion,
and bid-ask pricing application to finance under uncertainty, arXiv:1306.4070
[q-fin.PR].
- [18] J. Yang and W. Zhao, Numerical simulations for G-Brownian motion, Front. Math.
China 11, 1625-1643, 2016.
- [19] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration,
Acta Math. 67 (1), 251-282, 1936.