Araştırma Makalesi
BibTex RIS Kaynak Göster

Certain observations on local properties of topological spaces

Yıl 2025, Cilt: 54 Sayı: 3, 912 - 920, 24.06.2025
https://doi.org/10.15672/hujms.1416602

Öz

Let $\mathcal{P}$ be any topological property of a space $X$. We say that $X$ is $\mathcal{P}$ at $x\in X$ if there exist an open set $U$ and a subspace $Y$ of $X$ satisfying $\mathcal{P}$ such that $x\in U\subseteq Y$. We also say that $X$ is locally $\mathcal{P}$ if $X$ is $\mathcal{P}$ at every point of $X$. We study this local property and obtain the following results under certain topological assumptions on $\mathcal{P}$.

(1) Every locally $\mathcal{P}$ Hausdorff $P$-space can be densely embedded in a $\mathcal{P}$ Hausdorff $P$-space.

(2) If a Hausdorff $P$-space $X$ is $\mathcal{P}$ at $x\in X$, then $\chi(x,X)\leq\psi(x,X)^\omega$.

(3) For a locally $\mathcal{P}$ Hausdorff $P$-space $X$, $w(X)\leq nw(X)^\omega\leq |X|^\omega$.

Besides, few separation like properties are obtained and preservation under certain topological operations are also investigated. Finally we present certain observations on remainders of locally $\mathcal{P}$ spaces.

Kaynakça

  • [1] N. Alam and D. Chandra, On certain localized version of uniform selection principles, Filomat 36 (20), 6855-6865, 2022.
  • [2] N. Alam and D. Chandra, On localization of the Menger property, Quaest. Math. 46 (6), 1069-1092, 2023.
  • [3] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.) 67 (109), 55-88, 1965, English translation: Amer. Math. Soc. Transl. 92, 1-39, 1970.
  • [4] A.V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys 21 (4), 115-162, 1966.
  • [5] A.V. Arhangel’skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150, 79-90, 2005.
  • [6] A.V. Arhangel’skii and M.M. Choban, Some generalizations of the concept of a pspace, Topology Appl. 158, 1381-1389, 2011.
  • [7] A.V. Arhangel’skii, A generalization of Cech-complete spaces and Lindelöf $\Sigma$-spaces, Comment. Math. Univ. Carolin. 54 (2), 121-139, 2013.
  • [8] D. Chandra and N. Alam, On localization of the star-Menger selection principle, Hacet. J. Math. Stat. 50 (4), 1155-1168, 2021.
  • [9] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
  • [10] J. Gerlits and Zs. Nagy, Some properties of $C(X)$, I, Topology Appl. 14 (2), 151-161, 1982.
  • [11] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73, 241-266, 1996.
  • [12] Lj.D.R. Kocinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, 421-431, 1999.
  • [13] Lj.D.R. Kocinac, Selection principles in uniform spaces, Note Mat. 22 (2), 127-139, 2003.
  • [14] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (2), 287-302, 1968.
  • [15] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105-106, 1954.
  • [16] K. Nagami, $\Sigma$-spaces, Fund. Math. 65, 169-192, 1969.
  • [17] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69, 31-62, 1996.
  • [18] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, 107231, 2020.
  • [19] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.
Yıl 2025, Cilt: 54 Sayı: 3, 912 - 920, 24.06.2025
https://doi.org/10.15672/hujms.1416602

Öz

Kaynakça

  • [1] N. Alam and D. Chandra, On certain localized version of uniform selection principles, Filomat 36 (20), 6855-6865, 2022.
  • [2] N. Alam and D. Chandra, On localization of the Menger property, Quaest. Math. 46 (6), 1069-1092, 2023.
  • [3] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.) 67 (109), 55-88, 1965, English translation: Amer. Math. Soc. Transl. 92, 1-39, 1970.
  • [4] A.V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys 21 (4), 115-162, 1966.
  • [5] A.V. Arhangel’skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150, 79-90, 2005.
  • [6] A.V. Arhangel’skii and M.M. Choban, Some generalizations of the concept of a pspace, Topology Appl. 158, 1381-1389, 2011.
  • [7] A.V. Arhangel’skii, A generalization of Cech-complete spaces and Lindelöf $\Sigma$-spaces, Comment. Math. Univ. Carolin. 54 (2), 121-139, 2013.
  • [8] D. Chandra and N. Alam, On localization of the star-Menger selection principle, Hacet. J. Math. Stat. 50 (4), 1155-1168, 2021.
  • [9] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
  • [10] J. Gerlits and Zs. Nagy, Some properties of $C(X)$, I, Topology Appl. 14 (2), 151-161, 1982.
  • [11] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73, 241-266, 1996.
  • [12] Lj.D.R. Kocinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, 421-431, 1999.
  • [13] Lj.D.R. Kocinac, Selection principles in uniform spaces, Note Mat. 22 (2), 127-139, 2003.
  • [14] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (2), 287-302, 1968.
  • [15] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105-106, 1954.
  • [16] K. Nagami, $\Sigma$-spaces, Fund. Math. 65, 169-192, 1969.
  • [17] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69, 31-62, 1996.
  • [18] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, 107231, 2020.
  • [19] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Topoloji
Bölüm Matematik
Yazarlar

Debraj Chandra 0000-0001-5261-4598

Nur Alam 0000-0001-8236-9984

Erken Görünüm Tarihi 27 Ocak 2025
Yayımlanma Tarihi 24 Haziran 2025
Gönderilme Tarihi 8 Ocak 2024
Kabul Tarihi 3 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 3

Kaynak Göster

APA Chandra, D., & Alam, N. (2025). Certain observations on local properties of topological spaces. Hacettepe Journal of Mathematics and Statistics, 54(3), 912-920. https://doi.org/10.15672/hujms.1416602
AMA Chandra D, Alam N. Certain observations on local properties of topological spaces. Hacettepe Journal of Mathematics and Statistics. Haziran 2025;54(3):912-920. doi:10.15672/hujms.1416602
Chicago Chandra, Debraj, ve Nur Alam. “Certain Observations on Local Properties of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 54, sy. 3 (Haziran 2025): 912-20. https://doi.org/10.15672/hujms.1416602.
EndNote Chandra D, Alam N (01 Haziran 2025) Certain observations on local properties of topological spaces. Hacettepe Journal of Mathematics and Statistics 54 3 912–920.
IEEE D. Chandra ve N. Alam, “Certain observations on local properties of topological spaces”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, ss. 912–920, 2025, doi: 10.15672/hujms.1416602.
ISNAD Chandra, Debraj - Alam, Nur. “Certain Observations on Local Properties of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 54/3 (Haziran 2025), 912-920. https://doi.org/10.15672/hujms.1416602.
JAMA Chandra D, Alam N. Certain observations on local properties of topological spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54:912–920.
MLA Chandra, Debraj ve Nur Alam. “Certain Observations on Local Properties of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, 2025, ss. 912-20, doi:10.15672/hujms.1416602.
Vancouver Chandra D, Alam N. Certain observations on local properties of topological spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):912-20.