In this paper, we study the well-posedness in the sense of existence and uniqueness of a solution of integrally perturbed degenerate sweeping processes, involving convex sets in Hilbert spaces. The degenerate sweeping process is perturbed by a sum of a single-valued map satisfying a Lipschitz condition and an integral forcing term. The integral perturbation depends on two time-variables, by using a semi-discretization method. Unlike the previous works, the Cauchy's criterion of the approximate solutions is obtained without any new Gronwall's like inequality.
degenerate sweeping process perturbation differential inclusion set-valued map normal cone maximal monotone operator Volterra integro-differential equation
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalarda Dinamik Sistemler |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 27 Ağustos 2024 |
Yayımlanma Tarihi | 24 Haziran 2025 |
Gönderilme Tarihi | 9 Mart 2024 |
Kabul Tarihi | 6 Temmuz 2024 |
Yayımlandığı Sayı | Yıl 2025 Cilt: 54 Sayı: 3 |