Araştırma Makalesi
BibTex RIS Kaynak Göster

Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces

Yıl 2025, Cilt: 54 Sayı: 3, 894 - 911, 24.06.2025
https://doi.org/10.15672/hujms.1482251

Öz

This paper aims to introduce the concepts of Mackey convergence degree for sequences and separation degree for spaces in $(L, M)$-fuzzy bornological vector spaces. Additionally, the paper presents the concept of bornological closure degree for fuzzy sets. Moreover, the paper discusses various characteristics of these concepts. Furthermore, the paper examines the degree relationships among a Mackey convergence sequence, a separated space, and a bornologically closed fuzzy set. Finally, the paper analyzes the properties of functors $\omega$ and $\iota$ between $M$-fuzzifying bornological vector spaces and $(L, M)$-fuzzy bornological vector spaces in terms of Mackey convergence degree and separation degree.

Etik Beyan

The authors declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Destekleyen Kurum

The National Natural Science Foundation of China

Proje Numarası

NO. 12071225

Kaynakça

  • [1] M. Abel and A. Šostak, Towards the theory of L-bornological spaces, Iranian Journal of Fuzzy Systems, 8(1), 19–28, 2011.
  • [2] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, 11(3), 687–705, 2003.
  • [3] G. Beer and S. Levi, Gap, excess and bornological convergence, Set-Valued Analysis, 16, 489–506, 2008.
  • [4] G. Beer and S. Levi, Total boundedness and bornology, Topology and its Applications, 156, 1271–1288, 2009.
  • [5] G. Beer and S. Levi, Strong uniform continuity, Journal of Mathematical Analysis and Applications, 350, 568–589, 2009.
  • [6] G. Beer, S. Naimpally and J. Rodrigues-Lopes, S-topologies and bounded convergences, Journal of Mathematical Analysis and Applications, 339, 542–552, 2008.
  • [7] A. Caserta, G. Di Maio and L. Holá, Arzelá’s theorem and strong uniform convergence on bornologies, Journal of Mathematical Analysis and Applications, 371, 384–392, 2010.
  • [8] A. Caserta, G. Di Maio and Lj.D.R. Kočinac, Bornologies, selection principles and function spaces, Topology and its Applications, 159, 1847–1852, 2012.
  • [9] J.X. Fang and C.H. Yan, L-fuzzy topological vector spaces, The Journal of Fuzzy Mathematics, 5(1), 133–144, 1997.
  • [10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
  • [11] S.T. Hu, Boundedness in a topological space, Journal de Mathématiques Pures et Appliquées. Neuvième Série, 28, 287–320, 1949.
  • [12] S.T. Hu, Introduction to general topology, Holden-Day, San-Francisko, 1966.
  • [13] Z.Y. Jin and C.H. Yan, Induced L-bornological vector spaces and L-Mackey convergence, Journal of Intelligent & Fuzzy Systems, 40, 1277–1285, 2021.
  • [14] Z.Y. Jin and C.H. Yan, Fuzzifying bornological linear spaces, Journal of Intelligent & Fuzzy Systems, 42, 2347–2358, 2022.
  • [15] A. Lechicki, S. Levi and A. Spakowski, Bornological convergence, The Australian Journal of Mathematical Analysis and Applications, 297, 751–770, 2004.
  • [16] C.Y. Liang, F.G. Shi and J.Y. Wang, (L,M)-fuzzy bornological spaces, Fuzzy Sets and Systems, 467, 108496, 2023.
  • [17] Y. Liu and M. Luo, Fuzzy Topology, World Scientific Publishing, Singapore, 1998.
  • [18] S. Özçağ, Bornologies and bitopological function spaces, Filomat, 27(7), 1345–1349, 2013.
  • [19] J. Paseka, S. Solovyov and M. Stehlík, On the category of lattice-valued bornological vector spaces, Journal of Mathematical Analysis and Applications, 419, 138–155, 2014.
  • [20] G. N. Raney, A subdirect-union representation for completely distributive complete lattices, Proceeding of American Math Society, 4, 518–522, 1953.
  • [21] M. Saheli, Fuzzy topology generated by fuzzy norm, Iranian Journal of Fuzzy Systems, 13(4), 113–123, 2016.
  • [22] Y. Shen and C.H. Yan, Fuzzifying bornologies induced by fuzzy pseudo-norms, Fuzzy Sets and Systems, 467, 108436, 2023.
  • [23] A. Šostak and I. Uljane, L-valued bornologies on powersets, Fuzzy Sets and Systems, 294, 93–104, 2016.
  • [24] A. Šostak and I. Uljane, Bornological structures on many-valued sets, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 21, 143–168, 2017.
  • [25] G.J. Wang, Order-homomorphisms on Fuzzes, Fuzzy Sets and Systems, 12, 281–288, 1984.
  • [26] L. A. Zadeh, Fuzzy sets, Information and Control, 8, 238–353, 1965.
  • [27] H. Zhang and H. Zhang, The construction of I-bornological vector spa
Yıl 2025, Cilt: 54 Sayı: 3, 894 - 911, 24.06.2025
https://doi.org/10.15672/hujms.1482251

Öz

Proje Numarası

NO. 12071225

Kaynakça

  • [1] M. Abel and A. Šostak, Towards the theory of L-bornological spaces, Iranian Journal of Fuzzy Systems, 8(1), 19–28, 2011.
  • [2] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, 11(3), 687–705, 2003.
  • [3] G. Beer and S. Levi, Gap, excess and bornological convergence, Set-Valued Analysis, 16, 489–506, 2008.
  • [4] G. Beer and S. Levi, Total boundedness and bornology, Topology and its Applications, 156, 1271–1288, 2009.
  • [5] G. Beer and S. Levi, Strong uniform continuity, Journal of Mathematical Analysis and Applications, 350, 568–589, 2009.
  • [6] G. Beer, S. Naimpally and J. Rodrigues-Lopes, S-topologies and bounded convergences, Journal of Mathematical Analysis and Applications, 339, 542–552, 2008.
  • [7] A. Caserta, G. Di Maio and L. Holá, Arzelá’s theorem and strong uniform convergence on bornologies, Journal of Mathematical Analysis and Applications, 371, 384–392, 2010.
  • [8] A. Caserta, G. Di Maio and Lj.D.R. Kočinac, Bornologies, selection principles and function spaces, Topology and its Applications, 159, 1847–1852, 2012.
  • [9] J.X. Fang and C.H. Yan, L-fuzzy topological vector spaces, The Journal of Fuzzy Mathematics, 5(1), 133–144, 1997.
  • [10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
  • [11] S.T. Hu, Boundedness in a topological space, Journal de Mathématiques Pures et Appliquées. Neuvième Série, 28, 287–320, 1949.
  • [12] S.T. Hu, Introduction to general topology, Holden-Day, San-Francisko, 1966.
  • [13] Z.Y. Jin and C.H. Yan, Induced L-bornological vector spaces and L-Mackey convergence, Journal of Intelligent & Fuzzy Systems, 40, 1277–1285, 2021.
  • [14] Z.Y. Jin and C.H. Yan, Fuzzifying bornological linear spaces, Journal of Intelligent & Fuzzy Systems, 42, 2347–2358, 2022.
  • [15] A. Lechicki, S. Levi and A. Spakowski, Bornological convergence, The Australian Journal of Mathematical Analysis and Applications, 297, 751–770, 2004.
  • [16] C.Y. Liang, F.G. Shi and J.Y. Wang, (L,M)-fuzzy bornological spaces, Fuzzy Sets and Systems, 467, 108496, 2023.
  • [17] Y. Liu and M. Luo, Fuzzy Topology, World Scientific Publishing, Singapore, 1998.
  • [18] S. Özçağ, Bornologies and bitopological function spaces, Filomat, 27(7), 1345–1349, 2013.
  • [19] J. Paseka, S. Solovyov and M. Stehlík, On the category of lattice-valued bornological vector spaces, Journal of Mathematical Analysis and Applications, 419, 138–155, 2014.
  • [20] G. N. Raney, A subdirect-union representation for completely distributive complete lattices, Proceeding of American Math Society, 4, 518–522, 1953.
  • [21] M. Saheli, Fuzzy topology generated by fuzzy norm, Iranian Journal of Fuzzy Systems, 13(4), 113–123, 2016.
  • [22] Y. Shen and C.H. Yan, Fuzzifying bornologies induced by fuzzy pseudo-norms, Fuzzy Sets and Systems, 467, 108436, 2023.
  • [23] A. Šostak and I. Uljane, L-valued bornologies on powersets, Fuzzy Sets and Systems, 294, 93–104, 2016.
  • [24] A. Šostak and I. Uljane, Bornological structures on many-valued sets, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 21, 143–168, 2017.
  • [25] G.J. Wang, Order-homomorphisms on Fuzzes, Fuzzy Sets and Systems, 12, 281–288, 1984.
  • [26] L. A. Zadeh, Fuzzy sets, Information and Control, 8, 238–353, 1965.
  • [27] H. Zhang and H. Zhang, The construction of I-bornological vector spa
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Topoloji
Bölüm Matematik
Yazarlar

Yu Shen 0009-0002-9808-9404

C. H. Yan 0000-0002-6500-7807

Proje Numarası NO. 12071225
Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 24 Haziran 2025
Gönderilme Tarihi 11 Mayıs 2024
Kabul Tarihi 19 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 3

Kaynak Göster

APA Shen, Y., & Yan, C. H. (2025). Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces. Hacettepe Journal of Mathematics and Statistics, 54(3), 894-911. https://doi.org/10.15672/hujms.1482251
AMA Shen Y, Yan CH. Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces. Hacettepe Journal of Mathematics and Statistics. Haziran 2025;54(3):894-911. doi:10.15672/hujms.1482251
Chicago Shen, Yu, ve C. H. Yan. “Mackey Convergence and Separation in $(L, M)$-Fuzzy Bornological Vector Spaces”. Hacettepe Journal of Mathematics and Statistics 54, sy. 3 (Haziran 2025): 894-911. https://doi.org/10.15672/hujms.1482251.
EndNote Shen Y, Yan CH (01 Haziran 2025) Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces. Hacettepe Journal of Mathematics and Statistics 54 3 894–911.
IEEE Y. Shen ve C. H. Yan, “Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, ss. 894–911, 2025, doi: 10.15672/hujms.1482251.
ISNAD Shen, Yu - Yan, C. H. “Mackey Convergence and Separation in $(L, M)$-Fuzzy Bornological Vector Spaces”. Hacettepe Journal of Mathematics and Statistics 54/3 (Haziran 2025), 894-911. https://doi.org/10.15672/hujms.1482251.
JAMA Shen Y, Yan CH. Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54:894–911.
MLA Shen, Yu ve C. H. Yan. “Mackey Convergence and Separation in $(L, M)$-Fuzzy Bornological Vector Spaces”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, 2025, ss. 894-11, doi:10.15672/hujms.1482251.
Vancouver Shen Y, Yan CH. Mackey convergence and separation in $(L, M)$-fuzzy bornological vector spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):894-911.