Optimal plan and statistical inference for the inverse Nakagami-m distribution based on unified progressive hybrid censored data
Yıl 2025,
Cilt: 54 Sayı: 3, 1128 - 1163, 24.06.2025
Mohd Irfan
,
Anup Kumar Sharma
Öz
The present paper studies parametric inference for the inverse Nakagami-m distribution under a unified progressive hybrid censored sample. Maximum likelihood estimates of the unknown parameters are obtained using the Newton-Raphson method and the expectation-maximization algorithm. Approximate confidence intervals for the parameters are constructed via the variance-covariance matrix. Furthermore, Bayes estimates are investigated under the squared error and LINEX loss functions using gamma prior distributions for the unknown parameters. The Markov chain Monte Carlo approximation approach is employed to obtain the Bayes estimates and derive the highest posterior density credible intervals. The issue of hyperparameter selection is also discussed. In addition to Bayes estimates, maximum a posteriori estimates of the unknown parameters are computed using the Newton-Raphson method. The efficacy of the proposed approach is assessed through a Monte Carlo simulation study. The convergence of the MCMC sample is evaluated using various diagnostic plots. Three optimality criteria are presented to select the most suitable progressive scheme from different sampling plans. Two real-world applications that involve the fracture toughness of silicon nitride ($\text{Si}_3\text{N}_4$) and the active repair times (in hours) for an airborne communication transceiver are used to illustrate the practical utility of the proposed methodology.
Kaynakça
- [1] A. Childs, B. Chandrasekar, N. Balakrishnan, and D. Kundu, Exact likelihood inference
based on Type-I and Type-II hybrid censored samples from the exponential
distribution, Ann. Inst. Stat. Math. 55, 319-330, 2003.
- [2] A.I.E.S. Ibrahim, On Estimation and Prediction for the Kumaraswamy Distribution
Based on Progressive Censoring Schemes. (Doctoral dissertation, Zagazig University)
2023.
- [3] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. Ser. B Methodol. 39 (1), 1-22, 1977.
- [4] B. Chandrasekar, A. Childs and N. Balakrishnan Exact likelihood inference for the
exponential distribution under generalized TypeI and TypeII hybrid censoring, Nav.
Res. Logist. 51 (7), 994-1004, 2004.
- [5] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Stat. 555-564,
1954.
- [6] B. Hasselman and M.B. Hasselman, Package nleqslv, R package version 3 (2), 2018.
- [7] B. Pradhan and D. Kundu, Inference and optimal censoring schemes for progressively
censored BirnbaumSaunders distribution, J. Stat. Plan. Inference 143 (6), 1098-1108,
2013.
- [8] D. Kundu and A. Joarder, Analysis of Type-II progressively hybrid censored data,
Comput. Stat. Data Anal. 50 (10), 2509-2528, 2006.
- [9] D. Kundu, Bayesian inference and life testing plan for the Weibull distribution in
presence of progressive censoring, Technometrics 50 (2), 144-154, 2008.
- [10] F. Louzada, P. L. Ramos and D. Nascimento, The inverse Nakagami-m distribution:
A novel approach in reliability, IEEE Trans. Reliab. 67 (3), 1030-1042, 2018.
- [11] H. Panahi, Estimation of the Burr type III distribution with application in unified
hybrid censored sample of fracture toughness, J. Appl. Stat. 44 (14), 2575-2592, 2017.
- [12] M. Hashempour, A new two-parameter lifetime distribution with flexible hazard rate
function: Properties, applications and different method of estimations, Math. Slovaca
71 (4), 983-1004, 2021.
- [13] J. Górny and E. Cramer, Modularization of hybrid censoring schemes and its application
to unified progressive hybrid censoring, Metrika 81 (2), 173-210, 2018.
- [14] J. Bent. Statistical properties of the generalized inverse Gaussian distribution (Vol.
9). Springer Science & Business Media, 2008.
- [15] J. Kim and K. Lee, Estimation of the Weibull distribution under unified progressive
hybrid censored data, J. Kor. Data Anal. Soc. 20, 21892199, 2018.
- [16] K. Lee, H. Sun and Y. Cho, Exact likelihood inference of the exponential parameter
under generalized Type II progressive hybrid censoring, J KOREAN STAT SOC. 45
(1), 123-136, 2016.
- [17] L. Wang, S. Dey and Y.M. Tripathi, Classical and Bayesian inference of the inverse
Nakagami distribution based on progressive Type-II censored samples, Mathematics
10 (12), 2137, 2022.
- [18] M.H. Chen and Q.M. Shao, Monte Carlo estimation of Bayesian credible and HPD
intervals, J. Comput. Graph. Stat. 8 (1), 69-92, 1999.
- [19] M. Irfan and A. K. Sharma, Reliability characteristics of COVID-19 death rate using
generalized progressive hybrid censored data, Int. J. Qual. Reliab. Manag. 41 (3),
850-878, 2023.
- [20] G. S., Mohammad, A new mixture of exponential and Weibull distributions: properties,
estimation and relibilty modelling, São Paulo J. Math. Sci. 18 (1), 438-458,
2024.
- [21] M. Abramowitz and I. A. Stegun, (Eds.), Handbook of mathematical functions with
formulas, graphs, and mathematical tables (Vol. 55). US Government printing office,
1968.
- [22] M. Nakagami, The m-distributionA general formula of intensity distribution of rapid
fading, In Statistical methods in radio wave propagation, 3-36, 1960. Pergamon.
- [23] M. Nassar and A. Elshahhat, Estimation procedures and optimal censoring schemes
for an improved adaptive progressively type-II censored Weibull distribution, J. Appl.
Stat. 1-25, 2023.
- [24] M. Plummer, N. Best, K. Cowles and K. Vines, CODA: convergence diagnosis and
output analysis for MCMC, R news, 6 (1), 7-11, 2006.
- [25] M.H. Chen, Q.M. Shao and J.G. Ibrahim, Monte Carlo methods in Bayesian computation,
Springer Science & Business Media, 2012.
- [26] N. Balakrishnan and R. Aggarwala, Progressive censoring: theory, methods, and applications,
Springer Science & Business Media, 2000.
- [27] N. Balakrishnan, A. Rasouli and N. Sanjari Farsipour, Exact likelihood inference
based on an unified hybrid censored sample from the exponential distribution, J. Stat.
Comput. Simul. 78 (5), 475-488, 2008.
- [28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21 (6), 1087-
1092, 1953.
- [29] O.E. Abo-Kasem, A.R. El Saeed, and A.I. El Sayed, Optimal sampling and statistical
inferences for Kumaraswamy distribution under progressive Type-II censoring
schemes, Sci. Rep. 13 (1), 12063, 2023.
- [30] R.C.H. Cheng and N.A.K. Amin, Estimating parameters in continuous univariate
distributions with a shifted origin, J. R. Stat. Soc. Ser. B Methodol. 45 (3), 394-403,
1983.
- [31] G. Shaheed, Novel Weighted G family of Probability Distributions with Properties,
Modelling and Different Methods of Estimation, Stat. Optim. Inf. Comput. 10 (4),
1143-1161, 2022.
- [32] S.A. Lone, H. Panahi, S. Anwar and S. Shahab, Estimations and optimal censoring
schemes for the unified progressive hybrid gamma-mixed Rayleigh distribution, Electron.
Res. Arch. 31 (8), 4729-4752, 2023.
- [33] S. Dey, T. Dey and D.J. Luckett, Statistical inference for the generalized inverted
exponential distribution based on upper record values, Math. Comput. Simul. 120,
64-78, 2016.
- [34] S. Dutta and S. Kayal, Estimation and prediction for Burr type III distribution based
on unified progressive hybrid censoring scheme, J. Appl. Stat. 51 (1), 1-33, 2024.
- [35] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika 57, 97-109, 1970.
Yıl 2025,
Cilt: 54 Sayı: 3, 1128 - 1163, 24.06.2025
Mohd Irfan
,
Anup Kumar Sharma
Kaynakça
- [1] A. Childs, B. Chandrasekar, N. Balakrishnan, and D. Kundu, Exact likelihood inference
based on Type-I and Type-II hybrid censored samples from the exponential
distribution, Ann. Inst. Stat. Math. 55, 319-330, 2003.
- [2] A.I.E.S. Ibrahim, On Estimation and Prediction for the Kumaraswamy Distribution
Based on Progressive Censoring Schemes. (Doctoral dissertation, Zagazig University)
2023.
- [3] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. Ser. B Methodol. 39 (1), 1-22, 1977.
- [4] B. Chandrasekar, A. Childs and N. Balakrishnan Exact likelihood inference for the
exponential distribution under generalized TypeI and TypeII hybrid censoring, Nav.
Res. Logist. 51 (7), 994-1004, 2004.
- [5] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Stat. 555-564,
1954.
- [6] B. Hasselman and M.B. Hasselman, Package nleqslv, R package version 3 (2), 2018.
- [7] B. Pradhan and D. Kundu, Inference and optimal censoring schemes for progressively
censored BirnbaumSaunders distribution, J. Stat. Plan. Inference 143 (6), 1098-1108,
2013.
- [8] D. Kundu and A. Joarder, Analysis of Type-II progressively hybrid censored data,
Comput. Stat. Data Anal. 50 (10), 2509-2528, 2006.
- [9] D. Kundu, Bayesian inference and life testing plan for the Weibull distribution in
presence of progressive censoring, Technometrics 50 (2), 144-154, 2008.
- [10] F. Louzada, P. L. Ramos and D. Nascimento, The inverse Nakagami-m distribution:
A novel approach in reliability, IEEE Trans. Reliab. 67 (3), 1030-1042, 2018.
- [11] H. Panahi, Estimation of the Burr type III distribution with application in unified
hybrid censored sample of fracture toughness, J. Appl. Stat. 44 (14), 2575-2592, 2017.
- [12] M. Hashempour, A new two-parameter lifetime distribution with flexible hazard rate
function: Properties, applications and different method of estimations, Math. Slovaca
71 (4), 983-1004, 2021.
- [13] J. Górny and E. Cramer, Modularization of hybrid censoring schemes and its application
to unified progressive hybrid censoring, Metrika 81 (2), 173-210, 2018.
- [14] J. Bent. Statistical properties of the generalized inverse Gaussian distribution (Vol.
9). Springer Science & Business Media, 2008.
- [15] J. Kim and K. Lee, Estimation of the Weibull distribution under unified progressive
hybrid censored data, J. Kor. Data Anal. Soc. 20, 21892199, 2018.
- [16] K. Lee, H. Sun and Y. Cho, Exact likelihood inference of the exponential parameter
under generalized Type II progressive hybrid censoring, J KOREAN STAT SOC. 45
(1), 123-136, 2016.
- [17] L. Wang, S. Dey and Y.M. Tripathi, Classical and Bayesian inference of the inverse
Nakagami distribution based on progressive Type-II censored samples, Mathematics
10 (12), 2137, 2022.
- [18] M.H. Chen and Q.M. Shao, Monte Carlo estimation of Bayesian credible and HPD
intervals, J. Comput. Graph. Stat. 8 (1), 69-92, 1999.
- [19] M. Irfan and A. K. Sharma, Reliability characteristics of COVID-19 death rate using
generalized progressive hybrid censored data, Int. J. Qual. Reliab. Manag. 41 (3),
850-878, 2023.
- [20] G. S., Mohammad, A new mixture of exponential and Weibull distributions: properties,
estimation and relibilty modelling, São Paulo J. Math. Sci. 18 (1), 438-458,
2024.
- [21] M. Abramowitz and I. A. Stegun, (Eds.), Handbook of mathematical functions with
formulas, graphs, and mathematical tables (Vol. 55). US Government printing office,
1968.
- [22] M. Nakagami, The m-distributionA general formula of intensity distribution of rapid
fading, In Statistical methods in radio wave propagation, 3-36, 1960. Pergamon.
- [23] M. Nassar and A. Elshahhat, Estimation procedures and optimal censoring schemes
for an improved adaptive progressively type-II censored Weibull distribution, J. Appl.
Stat. 1-25, 2023.
- [24] M. Plummer, N. Best, K. Cowles and K. Vines, CODA: convergence diagnosis and
output analysis for MCMC, R news, 6 (1), 7-11, 2006.
- [25] M.H. Chen, Q.M. Shao and J.G. Ibrahim, Monte Carlo methods in Bayesian computation,
Springer Science & Business Media, 2012.
- [26] N. Balakrishnan and R. Aggarwala, Progressive censoring: theory, methods, and applications,
Springer Science & Business Media, 2000.
- [27] N. Balakrishnan, A. Rasouli and N. Sanjari Farsipour, Exact likelihood inference
based on an unified hybrid censored sample from the exponential distribution, J. Stat.
Comput. Simul. 78 (5), 475-488, 2008.
- [28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21 (6), 1087-
1092, 1953.
- [29] O.E. Abo-Kasem, A.R. El Saeed, and A.I. El Sayed, Optimal sampling and statistical
inferences for Kumaraswamy distribution under progressive Type-II censoring
schemes, Sci. Rep. 13 (1), 12063, 2023.
- [30] R.C.H. Cheng and N.A.K. Amin, Estimating parameters in continuous univariate
distributions with a shifted origin, J. R. Stat. Soc. Ser. B Methodol. 45 (3), 394-403,
1983.
- [31] G. Shaheed, Novel Weighted G family of Probability Distributions with Properties,
Modelling and Different Methods of Estimation, Stat. Optim. Inf. Comput. 10 (4),
1143-1161, 2022.
- [32] S.A. Lone, H. Panahi, S. Anwar and S. Shahab, Estimations and optimal censoring
schemes for the unified progressive hybrid gamma-mixed Rayleigh distribution, Electron.
Res. Arch. 31 (8), 4729-4752, 2023.
- [33] S. Dey, T. Dey and D.J. Luckett, Statistical inference for the generalized inverted
exponential distribution based on upper record values, Math. Comput. Simul. 120,
64-78, 2016.
- [34] S. Dutta and S. Kayal, Estimation and prediction for Burr type III distribution based
on unified progressive hybrid censoring scheme, J. Appl. Stat. 51 (1), 1-33, 2024.
- [35] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika 57, 97-109, 1970.